期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Composite Cathode based on Mn-doped Perovskite Niobate-Titanate for Efficient Steam Electrolysis
1
作者 章俊 谢奎 +3 位作者 李远欣 齐文涛 阮聪 吴玉程 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第4期457-464,J0002,共9页
Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and ... Redox-active Mn is introduced into the B site of redox-stable perovskite niobate-titanate to improve the electrocatalytic activity of composite cathode in an oxide-ion-conducting solid oxide electrolyzer. The XRD and XPS results reveal the successful partial replacement of Ti/Nb by Mn in the B site of niobate-titanate. The ionic conductivities of the Mndoped niobate-titanate are significantly improved by approximately 1 order of magnitude in reducing atmosphere and 0.5 order of magnitude in oxidizing atmosphere compared with bare niobate-titanate at 800 ℃. The current efficiency for Mn-doped niobate-titanate cathode is accordingly enhanced by ,-25% and 30% in contrast to the bare cathode with and without reducing gas flowing over the cathode under the applied voltage of 2.0 V at 800 ℃ in an oxide-ion-conducting solid oxide electrolyzer, respectively. 展开更多
关键词 PEROVSKITE Ionic conductivity High temperature steam electrolysis oxideion-conducting solid oxide electrolyzer
在线阅读 下载PDF
Composite Cathode Based on Redox-Reversible Nb2TiO7 for Direct High-Temperature Steam Electrolysis
2
作者 Shi-song Li Ji-gui Cheng +2 位作者 Xu-cheng Zhang Yu Wang Kui Xie 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第3期323-330,I0002,共9页
Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, ca... Ni/YSZ fuel electrodes can only operate under strongly reducing conditions for steam elec- trolysis in an oxide-ion-conducting solid oxide electrolyzer (SOE). In atmosphere with a low content of H2 or without H2, cathodes based on redox-reversible Nb2TiO7 provide a promising alternative. The reversible changes between oxidized Nb2TiO7 and reduced Nbl.33Tio.6704 samples are systematically investigated after redox-cycling tests. The conductivities of Nb2TiO7 and reduced Nb1.33Tio.6704 are studied as a function of temperature and oxygen partial pressure and correlated with the electrochemical properties of the composite electrodes in a symmetric cell and SOE at 830 ℃. Steam electrolysis is then performed using an oxide-ion-conducting SOE based on a Nb1.33Ti0.6704 composite fuel electrode at 830 ℃. The current-voltage and impedance spectroscopy tests demonstrate that the reduction and activation of the fuel electrode is the main process at low voltage; however, the steam electrolysis dominates the entire process at high voltages. The Faradic efficiencies of steam electrolysis reach 98.9% when 3%H2O/Ar/4%H2 is introduced to the fuel electrode and 89% for that with introduction of 3%H2O/Ar. 展开更多
关键词 Redox-reversible Alternative fuel electrode solid oxide electrolyzer Steamelectrolysis
在线阅读 下载PDF
Influence of surfactants on selective mechanical separation of fine active materials used in high temperature electrolyzers contributing to circular economy
3
作者 Sohyun Ahn Suvarna Patil Martin Rudolph 《Industrial Chemistry & Materials》 2024年第3期469-480,共12页
As one of the promising hydrogen production technologies,the development of water electrolysis systems including recycling of their functional components is actively investigated.However,the focus lies on energy and c... As one of the promising hydrogen production technologies,the development of water electrolysis systems including recycling of their functional components is actively investigated.However,the focus lies on energy and chemical intensive metallurgical operations and less on mechanical separation processes in most studies.Here,an innovative surfactant-based separation process(using CTAB and SDS)is investigated to contribute to developing a selective physical separation process for ultrafine particles used in high temperature water electrolyzers(composed of NiO,LSM,ZrO_(2),and YSZ).Their different surface charge in alkaline solutions influences the adsorption of surfactants on particle surfaces as well as the modification of particulate wettability,which is a key separation feature.Through the observations of changes in surface charge and wetting behavior in the presence of surfactants,a feasibility of liquid-liquid particle separation(LLPS)is evaluated.The performance of LLPS with model particle mixtures shows the potential of selective separation with recovery of NiO in the organic phase,while the rest of the particles remain in the aqueous phase.Perovskite LSM is not considered in this system because it shows a high possibility of being recovered by magnetic separation.The proposed process can be further optimized by increasing the phase separation stages,and further research is needed on the NiO phase,which showed exceptional behavior in the presence of the surfactants. 展开更多
关键词 Fine particle separation solid oxide electrolyzer RECYCLING Particle surface modification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部