Perovskite structure La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM) cathode with unique structure can electrolyze CO_2 to CO in solid oxide electrolysers(SOEs).However,the cell performance is restricte...Perovskite structure La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM) cathode with unique structure can electrolyze CO_2 to CO in solid oxide electrolysers(SOEs).However,the cell performance is restricted by its electro-catalysis activity.In this work,fluorite structure nanoparticles(CeO_(2-δ)) are impregnated on LSCM cathode to improve the electro-catalysis activity.X-ray diffraction(XRD),scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) together approve that the fluorite structure nanoparticles are uniformly distributed on the perovskite structure LSCM scaffold.Electrochemical measurements illustrate that direct CO_2 electrolysis with 10%mol CeO_(2-δ) impregnated LSCM cathode exhibits excellent performance for current density(0.5 A×cm^(-2)) and current efficiency(~95%) at 800 ℃ under 1.6 V.It is believed that the enhanced performance of directed CO_2 electrolysis may be due to the synergetic effect of fluorite structure CeO_(2-δ) nanoparticles and perovskite structure LSCM ceramic electrode.展开更多
Many researchers have studied on perovskite oxide for its unique structure.Perovskite oxides,ABO3-δ,with different A and B metals have shown wide applications in many fields,in particular solid oxide electrolysers.Sr...Many researchers have studied on perovskite oxide for its unique structure.Perovskite oxides,ABO3-δ,with different A and B metals have shown wide applications in many fields,in particular solid oxide electrolysers.SrFeO3-δ,typical perovskite oxides,in which iron is the mixed-valence cation with the capacity to change the chemical valence,have a wide range of oxygen nonstoichiometry.In this study,Sr(0.9)Fe(0.9)Zr(0.1)O3-δ(SFZO) is synthesized and then treated in 5%H2/Ar and air at high temperature,exhibiting excellent redox stability.Redox-stable structure,oxygen vacancy and electrical properties of SFZO are investigated.Steam electrolysis is then performed with SFZO cathode under 5%H2O/5%H2/Ar and 5%H2O/Ar atmospheres,respectively.The present results indicate that the SFZO is a novel promising cathode material for solid oxide steam electrolyser.展开更多
The ever-decreasing fossil fuels and the increasing greenhouse effect have caused substantial concern.Solid oxide electrolyser cell(SOEC)with La_(0.75)Sr_(0.25)Cr_(0.5 )Mn_(0.5)O_(3-δ)(LSCM)as a cathode was used for ...The ever-decreasing fossil fuels and the increasing greenhouse effect have caused substantial concern.Solid oxide electrolyser cell(SOEC)with La_(0.75)Sr_(0.25)Cr_(0.5 )Mn_(0.5)O_(3-δ)(LSCM)as a cathode was used for CO_(2) electrolysis to CO.In this work,the metal-oxide interface was constructed on the LSCM framework by in-situ exsolution and impregnation,and the uniform distribution of metal nanoparticles on the LSCM framework was confirmed by spectroscopy techniques and electron microscopy techniques.The existence of three-phase boundary promoted the absorption and electrolysis of CO_(2).(La_(0.75) Sr_(0.25))0.9(Cr_(0.5 )Mn_(0.5))_(0.9)(Ni_(0.5) Cu_(0.5))_(0.1) O_(3-δ)(LSCMNC)showed the best electrolytic CO_(2) performance at 850℃and exhibited excellent electrocatalytic activity after 100 hours of long-term testing and 8 redox cycles.展开更多
Solid oxide carbon dioxide electrolysers are expected to play a key role in carbon-neutral energy landscape.However,the limited activity of traditional ceramic cathodes still restricts the electrochemical performance....Solid oxide carbon dioxide electrolysers are expected to play a key role in carbon-neutral energy landscape.However,the limited activity of traditional ceramic cathodes still restricts the electrochemical performance.Here we report the doping of Mn at the B site of SrFeO3-δcathode to improve CO2 electrolysis.The oxygen vacancy concentration is increased by^30%with Mn doping while the surface oxygen exchange coefficients are enhanced by^10 times.The chemisorption of CO2 indicates the presence of chemical intermediate state between CO2 molecule and carbonate ion on the oxygen-deficient cathode surface which therefore leads to the desorption temperature of^800℃.The Mn-doped SrFeO3-δenhances CO2 electrolysis with no performance degradation being observed even after high-temperature operation of 100 hours.展开更多
基金supported by the National Natural Science Foundation of China(91545123)Natural Science Foundation of Fujian Province(2016J01275)
文摘Perovskite structure La_(0.75)Sr_(0.25)Cr_(0.5)Mn_(0.5)O_(3-δ)(LSCM) cathode with unique structure can electrolyze CO_2 to CO in solid oxide electrolysers(SOEs).However,the cell performance is restricted by its electro-catalysis activity.In this work,fluorite structure nanoparticles(CeO_(2-δ)) are impregnated on LSCM cathode to improve the electro-catalysis activity.X-ray diffraction(XRD),scanning electron microscope(SEM) and X-ray photoelectron spectroscopy(XPS) together approve that the fluorite structure nanoparticles are uniformly distributed on the perovskite structure LSCM scaffold.Electrochemical measurements illustrate that direct CO_2 electrolysis with 10%mol CeO_(2-δ) impregnated LSCM cathode exhibits excellent performance for current density(0.5 A×cm^(-2)) and current efficiency(~95%) at 800 ℃ under 1.6 V.It is believed that the enhanced performance of directed CO_2 electrolysis may be due to the synergetic effect of fluorite structure CeO_(2-δ) nanoparticles and perovskite structure LSCM ceramic electrode.
基金Supported by the National Natural Science Foundation of China(91545123)and the Natural Science Foundation of Fujian Province(2016J01275)
文摘Many researchers have studied on perovskite oxide for its unique structure.Perovskite oxides,ABO3-δ,with different A and B metals have shown wide applications in many fields,in particular solid oxide electrolysers.SrFeO3-δ,typical perovskite oxides,in which iron is the mixed-valence cation with the capacity to change the chemical valence,have a wide range of oxygen nonstoichiometry.In this study,Sr(0.9)Fe(0.9)Zr(0.1)O3-δ(SFZO) is synthesized and then treated in 5%H2/Ar and air at high temperature,exhibiting excellent redox stability.Redox-stable structure,oxygen vacancy and electrical properties of SFZO are investigated.Steam electrolysis is then performed with SFZO cathode under 5%H2O/5%H2/Ar and 5%H2O/Ar atmospheres,respectively.The present results indicate that the SFZO is a novel promising cathode material for solid oxide steam electrolyser.
基金the funding support from the National Natural Science Foundation of China(91845202)Dalian National Laboratory for Clean Energy(DNL180404)Strategic Priority Research Program of Chinese Academy of Sciences(XDB2000000)。
文摘The ever-decreasing fossil fuels and the increasing greenhouse effect have caused substantial concern.Solid oxide electrolyser cell(SOEC)with La_(0.75)Sr_(0.25)Cr_(0.5 )Mn_(0.5)O_(3-δ)(LSCM)as a cathode was used for CO_(2) electrolysis to CO.In this work,the metal-oxide interface was constructed on the LSCM framework by in-situ exsolution and impregnation,and the uniform distribution of metal nanoparticles on the LSCM framework was confirmed by spectroscopy techniques and electron microscopy techniques.The existence of three-phase boundary promoted the absorption and electrolysis of CO_(2).(La_(0.75) Sr_(0.25))0.9(Cr_(0.5 )Mn_(0.5))_(0.9)(Ni_(0.5) Cu_(0.5))_(0.1) O_(3-δ)(LSCMNC)showed the best electrolytic CO_(2) performance at 850℃and exhibited excellent electrocatalytic activity after 100 hours of long-term testing and 8 redox cycles.
基金Supported by the National Natural Science Foundation of China(No.21902025,91845202 and 21750110433)Innovative Project of the Education Department of Fujian Province(JAT170174)+2 种基金Natural Science Foundation of Fujian Province(2018J05012)Dalian National Laboratory for Clean Energy(DNL180404)Strategic Priority Research Program of Chinese Academy of Sciences(XDB2000000)。
文摘Solid oxide carbon dioxide electrolysers are expected to play a key role in carbon-neutral energy landscape.However,the limited activity of traditional ceramic cathodes still restricts the electrochemical performance.Here we report the doping of Mn at the B site of SrFeO3-δcathode to improve CO2 electrolysis.The oxygen vacancy concentration is increased by^30%with Mn doping while the surface oxygen exchange coefficients are enhanced by^10 times.The chemisorption of CO2 indicates the presence of chemical intermediate state between CO2 molecule and carbonate ion on the oxygen-deficient cathode surface which therefore leads to the desorption temperature of^800℃.The Mn-doped SrFeO3-δenhances CO2 electrolysis with no performance degradation being observed even after high-temperature operation of 100 hours.