期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
Solderability of Electrodeposited Fe-Ni Alloys with Eutectic SnAgCu Solder 被引量:1
1
作者 Jianjun GUO Lei ZHANG +1 位作者 Aiping XIAN J.K.Shang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第6期811-816,共6页
Solderabilities of electrodeposited Fe-Ni alloys with SnAgCu solder were examined by wetting balance measurements and compared to those of pure Ni and pure Fe platings. Excellent solderability was found on the Ni-52Fe... Solderabilities of electrodeposited Fe-Ni alloys with SnAgCu solder were examined by wetting balance measurements and compared to those of pure Ni and pure Fe platings. Excellent solderability was found on the Ni-52Fe plating as both the wetting force and kinetics approached or exceeded those on the pure Ni. However, upon further increase in Fe content to 75 at. pct, the solderability of the alloy was severely degraded even though it was still better than that of the pure Fe plating. X-ray photoelectron spectroscopy showed that such a strong dependence of solderability on Fe content is related to the much thinner, incomplete oxide coverage of Ni-rich plating surface. 展开更多
关键词 solderability FeNi alloys Lead-free solders WETTING
在线阅读 下载PDF
Effect of Ce on solderability of Sn-Cu-Ni solder 被引量:1
2
作者 王俭辛 赖忠民 王宇 《China Welding》 EI CAS 2011年第3期27-31,共5页
Abstract A small amount of rare earth Ce was added to Sn-Cu-Ni solder alloy, and the solderability of Sn-0. 5Cu-0. 05Ni- xCe solders on Cu and Au/Ni/Cu substrates was determined by the wetting balance method. The effe... Abstract A small amount of rare earth Ce was added to Sn-Cu-Ni solder alloy, and the solderability of Sn-0. 5Cu-0. 05Ni- xCe solders on Cu and Au/Ni/Cu substrates was determined by the wetting balance method. The effects of atmosphere, temperature, substrate, and Ce addition on the solderability of Sn-Cu-Ni-xCe solder were studied, respectively, and Auger electron spectroscopy ( AES) analysis in the depth direction of the alloy was carried out to discuss the effect of Ce addition on the solderability. The results indicate that the greatest improvement on the solderability of Sn-Cu-Ni-xCe is obtai^d with around O. 05wt. % -0. 07wt. % Ce addition, for Ce element keeps high content in a specific area in the depth direction from the surface of Sn-Cu-Ni alloy, which decreases the surface tension of molten solder. It is also found that the solderability of Sn-Cu-Ni-xCe solder on Au/Ni/ Cu substrate is better than that on Cu substrate. In N2 atmosphere, the wetting times of Sn- Ca-Ni-xCe alloys are reduced by 10% - 35% , below 1 s at 260 ℃ on Ca substrate, and about 1s at 250 ℃ on Au/Ni/Ca substrate. 展开更多
关键词 lead-free solder Sn-Cu-Ni solderability AES
在线阅读 下载PDF
Effect of Ag and Ni on the melting point and solderability of SnSbCu solder alloys
3
作者 Yan-fu Yan Yan-sheng Wang +2 位作者 Li-fang Feng Ke-xing Song Jiu-ba Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第6期691-695,共5页
To improve the properties of Sn10Sb8Cu solder alloy, two new solders (SnSbCuAg and SnSbCuNi) were formed by adding small amounts of Ag or Ni into the solder alloy. The results show that the melting point of the SnSb... To improve the properties of Sn10Sb8Cu solder alloy, two new solders (SnSbCuAg and SnSbCuNi) were formed by adding small amounts of Ag or Ni into the solder alloy. The results show that the melting point of the SnSbCuAg solder alloy decreases by 14.1℃ and the spreading area increases by 16.5% compared to the matrix solder. The melting point of the SnSbCuNi solder alloy decreases by 5.4℃ and the spreading area is slightly less than that of the matrix solder. Microstructure analysis shows that adding trace Ag makes the melting point decline due to the dispersed distribution of SnAg phase with low melting point. Adding trace Ni, Cu6Sn5 and (Cu, Ni)6Sn5 with polyhedron shape on the copper substrate can be easily seen in the SnSbCuNi solder alloy, which makes the viscosity of the melting solder increase and the spreading property of the solder decline. 展开更多
关键词 solder alloy AG NI melting point solderability
在线阅读 下载PDF
Al 1060/Pure Iron Clad Materials by Vacuum Roll Bonding and Their Solderability 被引量:3
4
作者 Qian Wang Xuesong Leng +3 位作者 Jiuchun Yan Weibing Guo Yu Fu Tianming Luan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第10期948-954,共7页
Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength... Al 1060/pure iron clad materials were produced by vacuum roll bonding. The effects of preheating temperature, vacuum roll reduction and initial thickness of the A11060 sheet on the metal interface and bonding strength were investigated. The interfacial microstructure was investigated and the mechanical properties of the joint were evaluated by shear testing. The bonding strength of the clad materials was generally enhanced by increasing the total reduction or preheating temperature, which caused the metal interface to flatten. No obvious reaction or diffusion layer was observed at the interface between Al 1060 and pure iron. The bonding strength increased with decreasing the initial thickness of the Al 1060 sheets. The Al 1060/pure iron clad materials were soldered with Zn-Al alloy by using an ultrasonic-assisted method. Strong bonding of the Al 1060 layer and Al 7N01 was realized without obvious Al 1060 dissolution or effect on the initial interface of Al 1060/pure iron clad materials by soldering at relatively low temperature. 展开更多
关键词 Al 1060/pure iron clad materials Vacuum roll bonding Bonding strength Ultrasonic-assisted soldering
原文传递
Solderability and intermetallic compounds formation of Sn-9Zn-xAg lead-free solders wetted on Cu substrate
5
作者 CHEN Wenxue XUE Songbai WANG Hui WANG Jianxin HAN Zongjie 《Rare Metals》 SCIE EI CAS CSCD 2009年第6期656-660,共5页
The eutectic Sn-9Zn alloy was doped with Ag (0 wt.%-1 wt.%) to form Sn-9Zn-xAg lead-free solder alloys. The effect of the addition of Ag on the microstructure and solderability of this alloy was investigated and int... The eutectic Sn-9Zn alloy was doped with Ag (0 wt.%-1 wt.%) to form Sn-9Zn-xAg lead-free solder alloys. The effect of the addition of Ag on the microstructure and solderability of this alloy was investigated and intermetallic compounds (IMCs) formed at the solder/Cu interface were also examined in this study. The results show that, due to the addition of Ag, the microstructure of the solder changes. When the quantity of Ag is lower than 0.3 wt.%, the needle-like Zn-rich phase decreases gradually. However, when the quantity of Ag is 0.5 wt.%-1 wt.%, Ag-Zn intermetallic compounds appear in the solder. In particular, adding 0.3 wt.% Ag improves the wetting behavior due to the better oxidation resistance of the Sn-9Zn solder. The addition of an excessive amount of Ag will deteriorate the wetting property because the gluti- nosity and fluidity of Sn-9Zn-(0.5, 1)Ag solder decrease. The results also indicate that the addition of Ag to the Sn-Zn solder leads to the precipitation of ε-AgZn3 from the liquid solder on preformed interracial intermetallics (CusZn8). The peripheral AgZn3, nodular on the Cu5Zn8 IMCs layer, is likely to be generated by a peritectic reaction L + γ-Ag5Zns→AgZn3 and the following crystallization of AgZn3. 展开更多
关键词 soldering materials lead-free solder WETTABILITY intermetallic compounds
在线阅读 下载PDF
Revealing crystal defects induced Kirkendall voiding in Cu/Sn solder joints
6
作者 Qi Zhang Zhiqiang Zhang +7 位作者 Fangyuan Zeng Wenjie Li Jinhao Liu Shubo Ai Yun Zheng Zhe Li Huaiyu Shao Zhi-Quan Liu 《Rare Metals》 2025年第9期6643-6660,共18页
Kirkendall voids(KVs)at the Cu/Sn interface are a typical failure in integrated circuits,leading to solder joint cracking and electrical disconnection.Although the formation of KVs has been attributed to the differenc... Kirkendall voids(KVs)at the Cu/Sn interface are a typical failure in integrated circuits,leading to solder joint cracking and electrical disconnection.Although the formation of KVs has been attributed to the difference in atomic diffusion rates at the Cu/Sn interface,the role of Cu intrinsic"quality"parameters(crystal defects)in this process remains unclear.This work systematically investigated the effects of Cu crystal defects on KVs:Cu substrates with different lattice defects and grain boundaries were prepared using proprietary electrodeposition additives,and the number of defects was quantitatively characterized by micro-strain,geometric dislocation density,and geometric phase analysis.The thermal aging experiments further showed that the formation of intermetallic compounds and KVs was related to crystal defect energy.When the grain boundary energy was higher than the lattice energy,the additional driving force resulted in short-circuit diffusion,causing local Cu depletion and voids.The lowcrystal-defect samples maintained the local Cu/Sn interdiffusion equilibrium,resulting in fewer voids after 1000 h.This study emphasizes that regulating the crystal defects can reduce KVs and provides a new insight for improving the integrated solder joint's reliability. 展开更多
关键词 Cu electrodeposition Cu/Sn solderability Microstructure engineering Crystal defects Kirkendall voids
原文传递
In-situ Si particle-reinforced joints of hypereutectic Al−60Si alloys by ultrasonic-assisted soldering 被引量:2
7
作者 Yuan-xing LI Xiang-bo ZHENG +3 位作者 Chao-zheng ZHAO Zong-tao ZHU Yu-jie BAI Hui CHEN 《Transactions of Nonferrous Metals Society of China》 2025年第1期77-90,共14页
To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si parti... To improve the wettability of hypereutectic Al−60Si alloy and enhance the mechanical properties of the joints,Al−60Si alloy was joined by ultrasonic soldering with Sn-9Zn solder,and a sound joint with in-situ Si particle reinforcement was obtained.The oxide film of Al−60Si alloy at the interface was identified by transmission electron microscopy(TEM)analysis as amorphous Al_(2)O_(3).The oxide of Si particles in the base metal was also alumina.The oxide film of Al−60Si alloy was observed to be removed by ultrasonic vibration instead of holding treatment.Si particle-reinforced joints(35.7 vol.%)were obtained by increasing the ultrasonication time.The maximum shear strength peaked at 99.5 MPa for soldering at 330℃with an ultrasonic vibration time of 50 s.A model of forming of Si particles reinforced joint under the ultrasound was proposed,and ultrasonic vibration was considered to promote the dissolution of Al and migration of Si particles. 展开更多
关键词 hypereutectic Al−60Si alloy ultrasonic-assisted soldering Si particle reinforcement Sn−9Zn solder
在线阅读 下载PDF
Preparation and Brazing Performance of Low-Silver SnAgCu Composite Solder Reinforced by Nickel Coated Al_(2)O_(3)
8
作者 Wang Bingying Zhang Keke +4 位作者 Fan Yuchun Wu Jinna Guo Limeng Wang Huigai Wang Nannan 《稀有金属材料与工程》 北大核心 2025年第4期854-861,共8页
Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepar... Dopamine polymerization reaction and hydrothermal method were used to prepare nickel coated Al_(2)O_(3)reinforcement phase(Ni/Al_(2)O_(3)).Ni/Al_(2)O_(3)reinforced Sn_(1.0)Ag_(0.5)Cu(SAC105)composite solder was prepared using traditional casting method.The result shows that the nickel coating layer is continuous with uneven thickness.The interface between nickel and aluminum oxide exhibits a metallurgical bonding with coherent interface relationship.The strength,toughness and wettability of the SAC105 solder on the substrate are improved,while the conductivity is not decreased significantly.The fracture mode of composites transitions from a mixed toughness-brittleness mode to a purely toughness-dominated mode,characterized by many dimples.The prepared composite brazing material was made into solder paste for copper plate lap joint experiments.The maximum shear strength is achieved when the doping amount was 0.3wt%.The growth index of intermetallic compound at the brazing interface of Ni/Al_(2)O_(3)reinforced SAC105 composite solder is linearly fitted to n=0.39,demonstrating that the growth of intermetallic compound at the interface is a combined effect of grain boundary diffusion and bulk diffusion. 展开更多
关键词 composite solder reinforcement phase polymerization reaction hydrothermal method interface
原文传递
Research Progress and Application of Flux-Coated Brazing and Soldering Materials
9
作者 Cheng Yafang Dong Bowen +2 位作者 Dong Xian Zhong Sujuan Long Weimin 《稀有金属材料与工程》 北大核心 2025年第11期2802-2808,共7页
Flux-coated brazing and soldering material is a type of material-saving and emission-reducing composite material in recent years,which is the representative product of the development of brazing and soldering technolo... Flux-coated brazing and soldering material is a type of material-saving and emission-reducing composite material in recent years,which is the representative product of the development of brazing and soldering technology,which is highly concerned by welding researchers worldwide.This work mainly reviewed the research reports on the design,preparation technology,and application of flux-coated brazing and soldering materials,put forward the shortcomings of current research,and proposed the future research directions mainly focusing on the standards,the synergistic reaction mechanism between flux and metals,the alloying,and the morphology of flux-coated brazing and soldering materials in order to provide reference information and theoretical guidance for related research and technological development in the field of welding. 展开更多
关键词 flux-coated brazing and soldering materials structural design preparation technology ALLOYING standard
原文传递
Research Status of Short Process Forming Techniques for Brazing and Soldering Materials
10
作者 Dong Bowen Shi Guangyuan +4 位作者 Zhong Sujuan Dong Xian Cheng Yafang Long Weimin Zhang Guanxing 《稀有金属材料与工程》 北大核心 2025年第2期377-384,共8页
Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This r... Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field. 展开更多
关键词 short process forming technique continuous casting atomization powder soldering ball rapid solidification amorphous filler metals
原文传递
Kinetics study on separation and recovery of In-Pb solder by vacuum volatilization
11
作者 Jian PANG Chao-wei DONG +2 位作者 Bao-qiang XU Ling-xin KONG Bin YANG 《Transactions of Nonferrous Metals Society of China》 2025年第9期3147-3160,共14页
The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures fr... The vacuum volatilization kinetics of Pb in In-Pb solder was investigated.The results indicate a significant increase in the vacuum volatilization rates of Pb,25In-75Pb,40In-60Pb,and In with increasing temperatures from 923 to 1123 K,system pressure of 3 Pa and holding time of 30 min.The mass transfer coefficients and apparent activation energies of Pb and its alloys were determined at various temperatures.Additionally,a kinetics model was developed to describe Pb vacuum volatilization in high-temperature melts.It is obtained that the vapor mass transfer is the factor limiting the vacuum volatilization rates of Pb and In-Pb alloys under the above specified conditions. 展开更多
关键词 vacuum volatilization In-Pb alloy SOLDER rate equation kinetics model
在线阅读 下载PDF
Advances in micro/nanoparticle-enhanced Sn-based composite solders
12
作者 Kaiming Liang Wenqiang Wan +4 位作者 Yifei Li Xin Zhang Xiangdong Ding Peng He Shuye Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2043-2064,共22页
Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development ... Sn-based solder is a widely used interconnection material in the field of electronic packaging;however,the performance requirements for these solders are becoming increasingly demanding owing to the rapid development in this area.In recent years,the addition of micro/nanoreinforcement phases to Sn-based solders has provided a solution to improve the intrinsic properties of the solders.This paper reviews the progress in Sn-based micro/nanoreinforced composite solders over the past decade.The types of reinforcement particles,preparation methods of the composite solders,and strengthening effects on the microstructure,wettability,melting point,mechanical properties,and corrosion resistance under different particle-addition levels are discussed and summarized.The mechanisms of performance enhancement are summarized based on material-strengthening effects such as grain refinement and second-phase dispersion strengthening.In addition,we discuss the current shortcomings of such composite solders and possible future improvements,thereby establishing a theoretical foundation for the future development of Sn-based solders. 展开更多
关键词 Sn-based composite solder micro/nanoparticles properties electronic packaging microstructure corrosion resistance
在线阅读 下载PDF
The synergistic inhibition of the growth of intermetallic compounds at Sn-0.7Cu/Cu interface by Al and Pt
13
作者 An-Cang Yang Yao-Ping Lu +6 位作者 Bin Zhang Yong-Hua Duan Li-Shi Ma Shan-Ju Zheng Ming-Jun Peng Meng-Nie Li Zhi-Hang Xu 《Rare Metals》 2025年第6期4208-4225,共18页
The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of el... The construction of intermetallic compounds(IMCs)connection layers with special compositions by adding small amounts of alloying elements has been proven to be an effective strategy for improving the reliability of electronic component interconnect.However,the synergistic effect mechanism of multi-component alloy compositions on the growth behavior of IMCs is not clear.Herein,we successfully prepared a new quaternary alloy solder with a composition of Sn-0.7Cu-0.175Pt-0.025Al(wt%)using the high-throughput screening(HTS)method.The results showed that it possesses excellent welding performance with an inhibition rate over 40%on the growth of IMCs layers.For Cu_(6)Sn_(5),the co-doping of Al and Pt not only greatly improves its thermodynamic stability,but also effectively suppresses the phase transition.Meanwhile,the co-doping of Al and Pt also significantly delays the generation time of Kirkendall defects.The substitution sites of Al and Pt in Cu_(6)Sn_(5)have been explored using atomic resolution imaging and advanced data informatics,indicating that Al and Pt preferentially substitute Sn and Cu atoms,respectively,to generate(Cu,Pt)_(6)(Sn,Al)_(5).A one-dimensional(1D)kinetic model of the IMCs layer growth at the Sn solder/Cu substrate interface was derived and validated,and the results showed that the error of the derived mathematical model is less than 5%.Finally,the synergistic mechanism of Al and Pt co-doping on the growth rate of Cu_(6)Sn_(5)was further elucidated.This work provides a feasible route for the design and development of multi-component alloy solders. 展开更多
关键词 Sn-based solder HTS IMCs layer Synergistic effect Growth kinetic models
原文传递
存储芯片基板材料失效分析及改善
14
作者 邵滋人 肖俊 王静 《中国集成电路》 2025年第6期65-69,共5页
存储芯片封装后的使用寿命之影响因素较多,其中封装内基板材料的可靠性起着关键作用。本研究发现,超声波清洗和长时间的水浸泡会降低阻焊层与铜以及基材材之间的附着力。此外,本研究首次对超声波清洗和水浸泡如何加速偏压高加速应力测试... 存储芯片封装后的使用寿命之影响因素较多,其中封装内基板材料的可靠性起着关键作用。本研究发现,超声波清洗和长时间的水浸泡会降低阻焊层与铜以及基材材之间的附着力。此外,本研究首次对超声波清洗和水浸泡如何加速偏压高加速应力测试(b-HAST)失效的机制进行了分析,并利用DOE优化清洗参数。最终,通过取消超声处理和减少冷水浸泡时间(减少至<30分钟)显著降低b-HAST失效率(从1%降至0%)。 展开更多
关键词 b-HAST solder mask 可靠性 超声波清洗 水浸泡
在线阅读 下载PDF
Corrosion behavior and life prediction of SAC305 solder joints in PVC fire smoke
15
作者 Meng-ke ZHAO Jian-rui FENG +2 位作者 Qian LI Shou-xiang LU Jin LIN 《Transactions of Nonferrous Metals Society of China》 2025年第2期538-551,共14页
The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation wer... The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model. 展开更多
关键词 solder joints fire smoke corrosion behavior electrical performance degradation life prediction model
在线阅读 下载PDF
Low-temperature active soldering of 5A06-Al alloy and Ti-Cu-Ni alloy mesh-reinforced SAC305 composite solder:Interfacial bonding behavior and joint properties
16
作者 Dan Li Bangfu Xi +4 位作者 Yong Xiao Lizhi Song Jian Zhang Dan Luo Russell Goodall 《Journal of Materials Science & Technology》 2025年第32期313-323,共11页
Achieving reliable bonding is critical for low-temperature active soldering in Al alloys.In this study,a novel Ti-Cu-Ni alloy mesh-reinforced SAC305 composite solder was developed for active soldering of 5A06-Al alloy... Achieving reliable bonding is critical for low-temperature active soldering in Al alloys.In this study,a novel Ti-Cu-Ni alloy mesh-reinforced SAC305 composite solder was developed for active soldering of 5A06-Al alloy at 350℃.Effects of soldering time on the microstructure and mechanical properties of joints were investigated,and the interfacial bonding mechanism of joints was analyzed.Results showed that the(Cu,Ni)_(6)Sn_(5) phase was formed between alloy mesh and SAC305 solder in the active composite solder,while Ti atoms were uniformly released from the alloy mesh.Metallurgical products within joints mainly comprised(Cu,Ni)_(6)Sn_(5) and Al_(3)(Ni,Cu)_(2) phases,which developed with increasing soldering time.An amorphous Al_(2)O_(3) layer and a Mg-containing layer were formed at the Al substrate/SAC305 solder interface.Mg atoms could enhance the charge transfer between Ti atoms and oxide film,attracting the diffusion of Ti atoms to oxide film.The oxide film removal processes relied on the synergistic impacts of Ti and Mg.The highest shear strength of joints reached 53.21±0.91 MPa,exceeding previously reported properties for low-temperature active soldering by over 100%.This exploration may provide insights into developing low-temperature active soldering technologies for Al alloys. 展开更多
关键词 5A06-Al alloy Ti alloy mesh Active soldering Interfacial bonding mechanism Shear strength
原文传递
Effect of Al_(2)O_(3)nano sol content in Ni-Al_(2)O_(3)composite coating on intermetallic compound formation and properties of Mg/Al soldered joints
17
作者 Yingzong Liu Yuanxing Li +2 位作者 Jinzhe Cui Zongtao Zhu Hui Chen 《Journal of Magnesium and Alloys》 2025年第4期1784-1798,共15页
Combining Mg and Al dissimilar metals further reduces structural weight,but the formation of intermetallic compounds(IMCs)affectsAl/Mg joint properties.To prevent IMCs,a Ni-Al_(2)O_(3)composite coating was pre-plated ... Combining Mg and Al dissimilar metals further reduces structural weight,but the formation of intermetallic compounds(IMCs)affectsAl/Mg joint properties.To prevent IMCs,a Ni-Al_(2)O_(3)composite coating was pre-plated on the Mg alloy substrate,and then Sn_(3.0)Ag_(0.5)Cu(SAC 305)solder was utilized to facilitate the joining of AZ31 Mg/6061 Al through ultrasonic-assisted soldering.We investigated the impactof Al_(2)O_(3)nano sol content in the coating on microstructure evolution,IMCs formation,and mechanical properties.Results indicated that theNi-Al_(2)O_(3)composite coating effectively suppressed the Mg-Sn reaction,thereby preventing the formation of Mg_(2)Sn IMC and significantlyenhancing joint strength.In joints with a Ni-Al_(2)O_(3)composite coating containing 50 mL/L Al_(2)O_(3)nano sol,no Mg_(2)Sn IMC was detectedafter 50 min of holding at 260℃,achieving a maximum shear strength of approximately 67.2 MPa.Increasing the Al_(2)O_(3)concentrationfurther expanded the soldering process window.For the joint with Ni-Al_(2)O_(3)(100 mL/L Al_(2)O_(3)nano sol)composite coating held at 260℃for 70 min,the coating was dissolved to a thickness of about 5.8μm,but no Mg_(2)Sn IMC was observed.The Ni-based solid solution formednear the coating/solder interface was strengthened,leading to fractures occurring within the SAC solder,and the maximum shear strengthfurther increased to 73.9 MPa.The strengthening mechanism of the joints facilitated by using the Ni-Al_(2)O_(3)composite coating was revealedby comparing with pure Ni-assisted joints.Therefore,employing a Ni-Al_(2)O_(3)composite coating as a barrier layer represents a promisingstrategy for inhibiting IMC formation during the joining of dissimilar metals. 展开更多
关键词 Ni-Al_(2)O_(3)composite coating Ultrasonic-assisted soldering Mg_(2)Sn IMC Shear strength
在线阅读 下载PDF
Effect of Sb content on properties of Sn-Bi solders 被引量:27
18
作者 张成 刘思栋 +2 位作者 钱国统 周健 薛烽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期184-191,共8页
The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading t... The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading test was carried out to characterize the wettability of Sn-Bi-Sb solders on Cu substrate. The mechanical properties of the solders/Cu joints were evaluated. The results show that the ternary alloy solders contain eutectic structure resulting from quasi-peritetic reaction. With the increase of Sb content, the amount of the eutectic structure increases. At a heating rate of 5 ℃/min, Sn-Bi-Sb alloys exhibit a higher melting point and a wider melting range. A small amount of Sb has an impact on the wettability of Sn-Bi solders. The reaction layers form during spreading process. Sb is detected in the reaction layer while Bi is not detected. The total thickness of reaction layer between solder and Cu increases with the increase of the Sb content. The shear strength of the Sn-Bi-Sb solders increases as the Sb content increases. 展开更多
关键词 lead-free solder Sn-Bi-Sb alloy MICROSTRUCTURE melting behavior WETTABILITY
在线阅读 下载PDF
Drop failure modes of Sn-3.0Ag-0.5Cu solder joints in wafer level chip scale package 被引量:7
19
作者 黄明亮 赵宁 +1 位作者 刘爽 何宜谦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1663-1669,共7页
To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were iden... To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side. 展开更多
关键词 Sn-3.0Ag-0.5Cu wafer level chip scale package solder joint drop failure mode
在线阅读 下载PDF
EFFECTS OF RARE EARTH ELEMENT LANTHANUM ON MICROSTRUCTURE AND PROPERTIES OF Ag-Cu-Ti SOLDER ALLOY 被引量:4
20
作者 杨长勇 徐九华 +2 位作者 丁文锋 付建峰 傅玉灿 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期230-234,共5页
The effects of rare earth Lanthanum on the microstructure, the physical property and the microhardness of Ag-Cu-Ti solder alloy are studied. Experimental results indicate that the addition of Lanthanum can evidently i... The effects of rare earth Lanthanum on the microstructure, the physical property and the microhardness of Ag-Cu-Ti solder alloy are studied. Experimental results indicate that the addition of Lanthanum can evidently improve the wettability and the microhardness of Ag-Cu-Ti solder alloy. Analysis results show that the increase in microhardness is related to the refining and uniform distribution of the intermetallic compounds. Proper content of Lanthanum added in Ag-Cu-Ti alloy solder can be controlled below 0.5% in mass percent. 展开更多
关键词 soldering alloys rare earth additionsl microstructure MICROHARDNESS
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部