期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
An overview of photothermal materials for solar-driven interfacial evaporation 被引量:2
1
作者 Yiming Fang Huimin Gao +4 位作者 Kaiting Cheng Liang Bai Zhengtong Li Yadong Zhao Xingtao Xu 《Chinese Chemical Letters》 2025年第3期6-15,共10页
The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the p... The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the performance of solar energy evaporation and minimizing material degradation during application can be achieved through the design of novel photothermal materials.In solar interfacial evaporation,photothermal materials exhibit a wide range of additional characteristics,but a systematic overview is lacking.This paper encompasses an examination of various categories and principles pertaining to photothermal materials,as well as the structural design considerations for salt-resistant materials.Additionally,we discuss the versatile uses of this appealing technology in different sectors related to energy and the environment.Furthermore,potential solutions to enhance the durability of photothermal materials are also highlighted,such as the rational design of micro/nano-structures,the use of adhesives,the addition of anti-corrosion coatings,and the preparation of self-healing surfaces.The objective of this review is to offer a viable resolution for the logical creation of high-performance photothermal substances,presenting a guide for the forthcoming advancement of solar evaporation technology. 展开更多
关键词 solar-driven interfacial evaporation Desalination Wastewater treatment Photothermal material SALT-RESISTANCE Durability
原文传递
Solar-driven chemical looping for efficient CO_(2)conversion
2
作者 Qiong Rao Yuanhui Shen +1 位作者 Ying Pan Hongguang Jin 《Journal of Energy Chemistry》 2025年第4期866-876,共11页
Repurposing of carbon dioxide to valuable chemicals and fuels with the assistance of renewable energy is essential for balanced carbon cycle.Here,a new CO_(2)conversion strategy was demonstrated that utilized concentr... Repurposing of carbon dioxide to valuable chemicals and fuels with the assistance of renewable energy is essential for balanced carbon cycle.Here,a new CO_(2)conversion strategy was demonstrated that utilized concentrated solar energy to directly drive chemical looping reverse water gas shift process,which simultaneously coupled the photothermal and photochemical effects to achieve enhanced CO_(2)reduction reactivity and 100%CO selectivity.The solar-driven chemical looping CO_(2)reduction on Ni-Fe_(2)O_(3/)La_(0.8)Sr_(0.2)FeO_(3)exhibited great activity,with an average CO production rate of up to 0.28 mmol/g_(oc)/min at 283℃The product yield of the solar-driven reaction was almost 600%higher than that of the thermal reaction at the same temperature.The CO production overcame the thermodynamic equilibrium limitation under the combined impact of thermal and non-thermal effects of direct-light illumination.Light irradiation reinforced reactive gas adsorption and dissociation of carbonate intermediates,and stimulated oxygen ion migration and lattice oxygen transformation,thus promoting the reactivity.The concept of concentrated solar energy to drive chemical looping reverse water gas shift opens a new avenue for effective CO_(2)resource utilization and solar fuel production. 展开更多
关键词 Chemical looping reverse water gas shift solar-driven CO_(2)conversion Photochemistry effect Iron oxide-perovskite composite oxygen carrier
在线阅读 下载PDF
High-efficient solar-driven hydrogen production by full-spectrum synergistic photo-thermo-catalytic methanol steam reforming with in-situ photoreduced Pt-CuO_(x) catalyst 被引量:5
3
作者 Donghui Li Jie Sun +1 位作者 Rong Ma Jinjia Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期460-469,I0012,共11页
Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocataly... Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production. 展开更多
关键词 solar-driven Hydrogen production Photo-thermo-catalysis Copper oxide Methanol steam reforming Reaction kinetics optimization
在线阅读 下载PDF
Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling c-ray irradiation with borate crosslinking 被引量:1
4
作者 Yu-Qing Qiao Yu Gu +3 位作者 Yu-Sen Meng Hai-Xia Li Bo-Wu Zhang Jing-Ye Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第12期13-25,共13页
Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs tha... Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs that was modified by polyvinyl alcohol(PVA)under c-ray irradiation on a cellulose acetate microporous membrane,followed by borate crosslinking.Fourier transform infrared spectroscopy,Raman spectroscopy,and thermogravimetry confirmed the success of PVA grafting onto MWCNTs and borate crosslinking between modified MWCNT nanoyarns.The as-prepared crosslinked MWCNT bucky papers(BBP membranes)were used as a solar absorber,by placing them on a paper-wrapped floating platform,for interfacial water evaporation under simulated solar irradiation.The BBP membranes showed good water tolerance and mechanical stability,with an evaporation rate of 0.79 kg m^(-2)h^(-1)and an evaporation efficiency of 56%under 1 sun illumination in deionized water.Additionally,the BBP membranes achieved an evaporation rate of 0.76 kg m^(-2)h^(-1)in both NaCl solution(3.5 wt%)and sulfuric acid solution(1 mol L-1),demonstrating their impressive applicability for water reclamation from brine and acidic conditions.An evaporation rate of 0.70 kg m-2 h-1(very close to that from deionized water)was obtained from the solar evaporation of saturated NaCl solution,and the BBP membrane exhibited unexpected stability without the inference of salt accumulation on the membrane surface during long-term continuous solar evaporation. 展开更多
关键词 c-ray irradiation Multi-walled carbon nanotubes Bucky paper solar-driven interfacial water evaporation Desalination
在线阅读 下载PDF
Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification 被引量:1
5
作者 Ying Guo Congqi Li +2 位作者 Peiling Wei Kai Hou Meifang Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第11期10-18,共9页
Interfacial solar-driven evaporators have presented great potential for water purification owing to their low energy consumption and high steam generation efficiency. However, their further applications are hindered b... Interfacial solar-driven evaporators have presented great potential for water purification owing to their low energy consumption and high steam generation efficiency. However, their further applications are hindered by the high costs and complicated fabrication processes. Here, a scalable bilayer interfacial evaporator was constructed via an affordable technique, in which carbon black deposited nonwoven fabric(CB@NF) was employed as the upper photothermal layer, as well as PVA/starch hybrid hydrogel for selffloating and water transport. Under simulated one sun irradiation, CB@NF layer displayed excellent photothermal conversion performance, whose temperature could increase 30.4 ℃ within 15 min. Moreover,the introduction of starch into PVA endowed the hybrid hydrogels with considerable water-absorption capability on the premise of ensuring mechanical properties. The resultant CB@NF/PVA/starch composites achieved superior interfacial adhesion performance with interfacial toughness at about 200 J m.Combining with good evaporation performance, salt-rejection property and high purification efficiency on pollutants, this evaporation system would become a promising candidate to alleviate water shortage. 展开更多
关键词 Fabric/hydrogel composite Interfacial solar-driven evaporation Water purification
原文传递
Harnessing overlapped temperature-salinity gradient in solar-driven interfacial seawater evaporation for efficient steam and electricity generation
6
作者 Peida Li Dongtong He +2 位作者 Jingchang Sun Jieshan Qiu Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期694-700,I0015,共8页
Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad... Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold. 展开更多
关键词 solar-driven interfacial water evaporation Steam generation Electricity generation Seawater
在线阅读 下载PDF
Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion
7
作者 Jun Xu Farzaneh Arabpour Roghabadi +4 位作者 Ying Luo Vahid Ahmadi Qian Wang Zheng Wang Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期165-182,共18页
Solar-driven carbon dioxide(CO_(2))conversion including photocatalytic(PC),photoelectrochemical(PEC),photovoltaic plus electrochemical(PV/EC)systems,offers a renewable and scalable way to produce fuels and high-value ... Solar-driven carbon dioxide(CO_(2))conversion including photocatalytic(PC),photoelectrochemical(PEC),photovoltaic plus electrochemical(PV/EC)systems,offers a renewable and scalable way to produce fuels and high-value chemicals for environment and energy sustainability.This review summarizes the basic fundament and the recent advances in the field of solar-driven CO_(2)conversion.Expanding the visible-light absorption is an important strategy to improve solar energy conversion efficiency.The separation and migration of photogenerated charges carriers to surface sites and the surface catalytic processes also determine the photocatalytic performance.Surface engineering including co-catalyst loading,defect engineering,morphology control,surface modification,surface phase junction,and Z-scheme photocatalytic system construction,have become fundamental strategies to obtain high-efficiency photocatalysts.Similar to photocatalysis,these strategies have been applied to improve the conversion efficiency and Faradaic efficiency of typical PEC systems.In PV/EC systems,the electrode surface structure and morphology,electrolyte effects,and mass transport conditions affect the activity and selectivity of electrochemical CO_(2)reduction.Finally,the challenges and prospects are addressed for the development of solar-driven CO_(2)conversion system with high energy conversion efficiency,high product selectivity and stability. 展开更多
关键词 solar-driven CO_(2)reduction Photocatalytic system Photoelectrochemical system Photovoltaic plus electrochemical system Surface/interface engineering
原文传递
Solar-Driven Water Treatment: New Technologies, Challenges, and Futures
8
作者 Djamel Ghernaout Sara Irki +1 位作者 Noureddine Elboughdiri Badia Ghernaout 《Green and Sustainable Chemistry》 CAS 2023年第2期110-152,共43页
In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar de... In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar desalination technologies include solar-powered humidification–dehumidification, multi-stage flash desalination, multi-effect desalination, RO, and solar stills. Each technology’s productivity, energy consumption, and water production costs are presented. Also, common methods of solar water disinfection have been reviewed as one of the common and low-cost methods of water treatment, especially in areas with no access to drinking water. However, although desalination technologies have many social, economic, and public health benefits, they are energy-intensive and negatively affect the environment. In addition, the disposal of brine from the desalination processes is one of the most challenging and costly issues. In this regard, the environmental effects of desalination technologies are presented and discussed. Among direct solar water desalination technologies, solar still technology is a low-cost, low-tech, and low-investment method suitable for remote areas, especially in developing countries with low financial support and access to skilled workers. Indirect solar-driven water desalination technologies, including thermal and membrane technologies, are more reliable and technically more mature. Recently, RO technology has received particular attention thanks to its lower energy demand, lower cost, and available solutions to increase membrane durability. Disposal of brines can account for much of the water cost and potentially negatively affect the environment. Therefore, in addition to efforts to improve the efficiency and reduce the cost of solar technologies and water treatment processes, future research studies should consider developing new solutions to this issue. 展开更多
关键词 Renewable Energy (RE) solar-driven Desalination Solar Water Disinfection (SODIS) BRINE Greenhouse Gases (GHGs) Reverse Osmosis (RO)
在线阅读 下载PDF
Pickering Emulsion-Driven MXene/Silk Fibroin Hydrogels with Programmable Functional Networks for EMI Shielding and Solar Evaporation
9
作者 Guang Yin Jing Wu +3 位作者 Chengzhang Qi Xinfeng Zhou Zhong-Zhen Yu Hao-Bin Zhang 《Nano-Micro Letters》 2025年第12期369-382,共14页
Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields.However,the controllable manipulation of functional electron/mass transport networks in hydrogels remains ... Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields.However,the controllable manipulation of functional electron/mass transport networks in hydrogels remains rather challenging to realize.We describe a general and versatile surfactant-free emulsion construction strategy to customize robust functional hydrogels with programmable hierarchical structures.Significantly,the amphipathy of silk fibroin(SF)and the reinforcement effect of MXene nanosheets produce sable Pickering emulsion without any surfactant.The followed microphase separation and self-cross-linking of the SF chains induced by the solvent exchange convert the composite emulsions into high-performance hydrogels with tunable microstructures and functionalities.As a proof-of-concept,the controllable regulation of the ordered conductive network and the water polarization effect confer the hydrogels with an intriguing electromagnetic interference shielding efficiency(~64 dB).Also,the microstructures of functional hydrogels are modulated to promote mass/heat transfer properties.The amino acids of SF and the surface terminations of MXene help reduce the enthalpy of water evaporation and the hierarchical structures of the hydrogels accelerate evaporation process,expecting far superior evaporation performance(~3.5 kg m^(-2)h^(-1))and salt tolerance capability compared to other hydrogel evaporators.Our findings open a wealth of opportunities for producing functional hydrogel devices with integrated structure-dependent properties. 展开更多
关键词 MXene Silk fibroin Pickering emulsion Electromagnetic interference shielding solar-driven evaporation
暂未订购
Integration of Bio-Enzyme-Treated Super-Wood and AIE-Based Nonwoven Fabric for Efficient Evaporating the Wastewater with High Concentration of Ammonia Nitrogen
10
作者 Qian Ding Bingqi Jin +5 位作者 Yinxia Zheng Huiru Zhao Jun Wang Haoxuan Li Dong Wang Ben Zhong Tang 《Nano-Micro Letters》 2025年第8期1-16,共16页
The treatment of ammonia nitrogen wastewater(ANW)has garnered significant attention due to the ecology,and even biology is under increasing threat from over discharge ANW.Conventional ANW treatment methods often encou... The treatment of ammonia nitrogen wastewater(ANW)has garnered significant attention due to the ecology,and even biology is under increasing threat from over discharge ANW.Conventional ANW treatment methods often encounter challenges such as complex processes,high costs and secondary pollution.Considerable progress has been made in employing solar-induced evaporators for wastewater treatment.However,there remain notable barriers to transitioning from fundamental research to practical applications,including insufficient evaporation rates and inadequate resistance to biofouling.Herein,we propose a novel evaporator,which comprises a bio-enzyme-treated wood aerogel that serves as water pumping and storage layer,a cost-effective multi-walled carbon nanotubes coated hydrophobic/hydrophilic fibrous nonwoven mat functioning as photothermal evaporation layer,and aggregation-induced emission(AIE)molecules incorporated as anti-biofouling agent.The resultant bioinspired evaporator demonstrates a high evaporation rate of 12.83 kg m^(−2) h^(−1) when treating simulated ANW containing 30 wt%NH4Cl under 1.0 sun of illumination.AIE-doped evaporator exhibits remarkable photodynamic antibacterial activity against mildew and bacteria,ensuring outstanding resistance to biofouling over extended periods of wastewater treatment.When enhanced by natural wind under 1.0 sun irradiation,the evaporator achieves an impressive evaporation rate exceeding 20 kg m^(−2) h^(−1) .This advancement represents a promising and viable approach for the effective removal of ammonia nitrogen wastewater. 展开更多
关键词 Wood aerogel AIE Anti-biofouling solar-driven interface evaporation Ammonia nitrogen wastewater treatment
在线阅读 下载PDF
Converting waste polyimide into porous carbon nanofiber for all-weather freshwater and hydroelectricity generation
11
作者 Lijie Liu Huajian Liu +7 位作者 Huiyue Wang Kuankuan Liu Guixin Hu Yan She Xueying Wen Hangyuan Du Lingling Feng Jiang Gong 《Green Energy & Environment》 2025年第11期2187-2200,共14页
The dual system capable of solar-driven interfacial steam production and all-weather hydropower generation is emerging as a potential way to alleviate freshwater shortage and energy crisis.However,the intrinsic mechan... The dual system capable of solar-driven interfacial steam production and all-weather hydropower generation is emerging as a potential way to alleviate freshwater shortage and energy crisis.However,the intrinsic mechanism of hydroelectricity generation powered by the interaction between seawater and material structure is vague,and it remains challenging to develop dual-functional evaporators with high photothermal conversion efficiency and ionic selectivity.Herein,an all-weather dual-function evaporator based on porous carbon fiber-like(PCF)is acquired through the pyrolysis of barium-based metal-organic framework(Ba-BTEC),which is originated from waste polyimide.The PCF-based evaporator/device exhibits a high steam generation rate of 2.93 kg m^(-2)h^(-1)in seawater under 1 kW m^(-2)irradiation,along with the notable opencircuit voltage of 0.32 V,owing to the good light absorption ability,optimal wettability,and suitable aperture size.Moreover,molecular dynamics simulation result reveals that Na+tends to migrate rapidly within the nanoporous channels of PCF,owing to a strong affinity between oxygen-containing functional group and water molecules.This work not only proposes an eco-friendly strategy for constructing low-cost fulltime freshwater-hydroelectric co-generation device,but also contributes to the understanding of evaporation-driven energy harvesting technology. 展开更多
关键词 Porous carbon nanofiber Interfacial solar-driven evaporation Electricity generation Waste polyimide Metal-organic framework
在线阅读 下载PDF
Optimizing lead-free halide perovskites:Strategies for enhanced performance and selectivity in photocatalytic CO_(2) reduction
12
作者 Manjing Wang Daofu Wu Xiaosheng Tang 《DeCarbon》 2025年第3期14-23,共10页
Solar energy-powered photocatalytic processes represent a promising avenue for sustainable energy and chemical production.Among these,lead-free halide perovskites(LFHPs)have garnered attention as a next-generation cla... Solar energy-powered photocatalytic processes represent a promising avenue for sustainable energy and chemical production.Among these,lead-free halide perovskites(LFHPs)have garnered attention as a next-generation class of photocatalysts for CO_(2) reduction,offering the advantages of high light absorption and low toxicity.However,the practical application of LFHPs remains constrained by limited catalytic activity and poor product selectivity.This review discusses the advancements in strategies to enhance the catalytic efficiency of LFHPs,such as compositional engineering,surface passivation,and heterostructure formation.These approaches aim to optimize charge carrier dynamics,reduce recombination rates,and improve stability under reaction conditions.Emphasis is also placed on methods to control product selectivity,including tailored reaction envi-ronments,co-catalyst integration,and fine-tuning electronic band structures.The discussion extends to key challenges such as material stability under photocatalytic conditions,scalability for industrial applications,and a deeper understanding of reaction mechanisms at the molecular level.Finally,future prospects highlight the critical role of LFHPs in achieving efficient,scalable,and eco-friendly solar-driven chemical synthesis,high-lighting their potential to reshape the landscape of sustainable photocatalysis. 展开更多
关键词 Lead-free halide perovskites Photocatalytic CO_(2)reduction solar-driven photocatalysis Catalytic activity optimization Selectivity regulation strategies
在线阅读 下载PDF
非晶态Ni-Mo-Fe合金作电解水析氢反应电极 被引量:16
13
作者 胡伟康 张允什 +1 位作者 宋德瑛 汪筠 《功能材料》 EI CAS CSCD 1995年第5期456-458,共3页
用电沉积法制备非晶态Ni_(41.5)Mo_(35.5)Fe_(23.0)合金电极。该合金电极在30wt%KOH溶液,70℃作析氢反应阴极,实验研究结果表明,合金电极对氢的析出反应具有优良的电催化性能。在200mA/... 用电沉积法制备非晶态Ni_(41.5)Mo_(35.5)Fe_(23.0)合金电极。该合金电极在30wt%KOH溶液,70℃作析氢反应阴极,实验研究结果表明,合金电极对氢的析出反应具有优良的电催化性能。在200mA/cm ̄2电流密度下析氢反应过电位约90mV,在连续电解和间歇电解条件下有良好的电化学稳定性。 展开更多
关键词 金属玻璃 镍钼铁合金 析氢反应 电催化 电解
在线阅读 下载PDF
无汞碱性锌锰电池负极缓蚀剂研究方法 被引量:2
14
作者 吕东生 李伟善 邱仕洲 《电池工业》 CAS 2001年第5期199-202,共4页
介绍了4种关于碱性锌锰电池锌电极缓蚀剂的研究方法,即析氢法、极化曲线法、交流阻抗法、循环伏安法。对这几种方法进行了比较:腐蚀法简单易行,结果直观;极化曲线法和交流阻抗法可以获得较多的信息;循环伏安法对无汞可充碱性锌锰电池缓... 介绍了4种关于碱性锌锰电池锌电极缓蚀剂的研究方法,即析氢法、极化曲线法、交流阻抗法、循环伏安法。对这几种方法进行了比较:腐蚀法简单易行,结果直观;极化曲线法和交流阻抗法可以获得较多的信息;循环伏安法对无汞可充碱性锌锰电池缓蚀剂的研究特别有意义。 展开更多
关键词 碱性锌锰电池 缓蚀剂 腐蚀速度 析氢量 极化 交流阻抗 循环伏安
在线阅读 下载PDF
无定型钼硫化物,还原氧化石墨烯的辐射合成及其电催化析氢性能 被引量:6
15
作者 曹朋飞 胡杨 +2 位作者 张有为 彭静 翟茂林 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第12期2542-2549,共8页
钼硫化物被认为是一种高效的电催化析氢反应的催化剂,因此其合成方法受到了广泛的研究和关注。本文以四硫代钼酸铵和氧化石墨为前驱体,利用γ射线对其辐照还原,一步法制备了钼硫化物/还原氧化石墨烯(Mo S_x/RGO)复合材料。通过X射线光... 钼硫化物被认为是一种高效的电催化析氢反应的催化剂,因此其合成方法受到了广泛的研究和关注。本文以四硫代钼酸铵和氧化石墨为前驱体,利用γ射线对其辐照还原,一步法制备了钼硫化物/还原氧化石墨烯(Mo S_x/RGO)复合材料。通过X射线光电子能谱、X射线衍射、透射电子显微镜、Raman光谱等表征手段确认复合材料中的Mo Sx为无定型结构,且氧化石墨烯得到了有效的还原。同时系统研究了吸收剂量、前驱体配比对复合材料作为析氢反应催化剂性能的影响。结果发现,Mo Sx/RGO复合材料具有优异的催化性能,其催化起始电压为110 m V,在电流密度为10 m A·cm^(-2)时过电势仅为160 m V,Tafel斜率为46 m V·dec^(-1),说明该催化剂催化析氢机理为Volmer-Heyrovesy机理。此外,Mo Sx/RGO复合材料还具有良好的催化稳定性。 展开更多
关键词 钼硫化物 还原氧化石墨烯 辐射还原 电催化析氢 Volmer-Heyrovesy机理
在线阅读 下载PDF
Shaping the future of solar-driven photocatalysis by reticular framework materials
16
作者 Alamgir Nouraiz Mushtaq +5 位作者 Abrar Ahmad Javaria Khayaban E Erum Lan Li Jinjie Qian Xusheng Wang Junkuo Gao 《Journal of Materials Science & Technology》 2025年第28期193-244,共52页
Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic a... Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field. 展开更多
关键词 Reticular framework materials solar-driven photocatalysis CO_(2)RR(CO_(2)reduction reaction) HER(Hydrogen evolution reaction) H_(2)O_(2) N_(2)fixation
原文传递
rGO/TiO_2及其三元复合材料光催化性能的研究进展 被引量:1
17
作者 英启炜 何小芳 曹新鑫 《人工晶体学报》 CSCD 北大核心 2017年第12期2427-2431,共5页
r GO/Ti O_2复合材料优异的光催化性能为其在有机染料降解,雨水消毒和催化析氢等方面的应用提供可能,通过与金属、金属化合物或高聚物复合可提升光催化效率和化学稳定性。分析反应机理,阐述现阶段研究的重点和不足,同时对未来发展和应... r GO/Ti O_2复合材料优异的光催化性能为其在有机染料降解,雨水消毒和催化析氢等方面的应用提供可能,通过与金属、金属化合物或高聚物复合可提升光催化效率和化学稳定性。分析反应机理,阐述现阶段研究的重点和不足,同时对未来发展和应用进行展望。 展开更多
关键词 rGO/TiO2复合材料 光催化性 雨水消毒 催化析氢
在线阅读 下载PDF
NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting 被引量:8
18
作者 Lei Chen Yaohao Song +4 位作者 Yi Liu Liang Xu Jiaqian Qin Yongpeng Lei Yougen Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期395-401,共7页
The development of non-precious, high-efficient and durable electrocatalysts for H2 evolution in alkaline media is highly desirable. Herein we report NiCoP nanoleaves array vertically grown on Ni foam for H2 evolution... The development of non-precious, high-efficient and durable electrocatalysts for H2 evolution in alkaline media is highly desirable. Herein we report NiCoP nanoleaves array vertically grown on Ni foam for H2 evolution and overall water splitting via simple hydrothermal treatment and phosphorization. The selfsupported NiCoP nanoleaves architecture contributes to more exposed active sites, the smaller contact resistance between catalyst and substrate, faster ion diffusion and electron transfer. As a result, the optimized electrode requires only overpotentials of 98 and 173 mV to achieve current densities of 10 and100 m A cm-2 in 1.0 M KOH,respectively. Besides, used as both anode and cathode simultaneously, the electrode delivers current densities of 100 and 200 m A cm-2 at cell voltages of only 1.8 and 1.87 V, respectively. Moreover, the relatively high efficiency of about 11.4% for solar-driven water splitting further illustrates the application of our catalyst to sustainable development based on green technologies. 展开更多
关键词 ELECTROCATALYSIS Hydrogen evolution reaction Alkaline media Water splitting solar-driven electrolysis
在线阅读 下载PDF
碱水电解用NiPOH-RuO_(2)催化电极的析氢析氧反应研究 被引量:1
19
作者 李勇 朱思达 +1 位作者 赵坤 邵艳群 《电镀与精饰》 CAS 北大核心 2024年第12期10-18,共9页
电解水制氢用电极材料对析氢和析氧反应起着重要的作用。羟基亚磷酸镍(Ni_(11)(HPO_(3))_(8)(OH)_(6),缩写为Ni POH)具有多孔结构和丰富的活性中心备受关注,然而其低电导率以及相应的缓慢电子转移速率限制了其电催化性能。添加高导电性... 电解水制氢用电极材料对析氢和析氧反应起着重要的作用。羟基亚磷酸镍(Ni_(11)(HPO_(3))_(8)(OH)_(6),缩写为Ni POH)具有多孔结构和丰富的活性中心备受关注,然而其低电导率以及相应的缓慢电子转移速率限制了其电催化性能。添加高导电性和活性物质提升电子传输效率和反应动力学,有望增强其在电解水过程中的催化活性与持久性。本文采用水热法在泡沫镍上原位生长Ni POH-x at.%RuO_(2)电极材料,采用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、线性扫描伏安法(LSV)和计时电位法(CP)等研究Ru O_(2)含量对电极微观形貌及其电化学性能的影响,辅以第一性原理计算探讨Ni POH-x at.%RuO_(2)在全解水过程中的性能。结果表明:添加Ru O_(2)可改变Ni POH微球的形貌,使其具有更大比表面积。Ni元素是由Ni2+和Ni3+组成,Ru由Ru^(3+)和Ru^(4+)组成。Ru掺杂使Ni POH的电子转移能垒降低,费米能级附近电子密度增大。当电流密度为10 m A/cm^(2)时,Ru O_(2)的加入明显降低了析氢过电位,NiPOH-3 at.%RuO_(2)的析氢过电位最低为93 mV,而Ni POH电极为161 mV,Ni POH-3 at.%RuO_(2)电极的析氧Tafel斜率同期达到最小。Ni POH-x at.%RuO_(2)电极的析氢过程是以Heyrovsky步骤为主的Volmer-Heyrovsky控制反应。 展开更多
关键词 Ru O_(2) Ni11(HPO_(3))_(8)(OH)_(6) 第一性原理计算 电解水 析氢反应 析氧反应
在线阅读 下载PDF
Boosting overall water splitting by incorporating sulfur into NiFe(oxy)hydroxide 被引量:3
20
作者 Chiho Kim Seong Hyun Kim +6 位作者 Seunghun Lee Ilyeong Kwon Seong Hyun Kim Shinho kim Changgyu Seok Yoo Sei Park Yangdo Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期364-371,I0010,共9页
Developing highly active and cost-effective electrocatalysts for enhancing the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a significant challenge for overall water splitting.Sulfur-incorporat... Developing highly active and cost-effective electrocatalysts for enhancing the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a significant challenge for overall water splitting.Sulfur-incorporated nickel iron(oxy)hydroxide(S-NiFeOOH)nanosheets were directly grown on commercial nickel foam using a galvanic corrosion method and a hydrothermal method.The incorporation of sulfur into NiFeOOH enhanced the catalytic activity for the HER and OER in 1 M KOH electrolyte.The enhanced catalytic activity is attributed to the change in the local structure and chemical states due to the incorporation of sulfur.High performance for overall water splitting was achieved with an alkaline water electrolyzer.This was realized by employing S-NiFeOOH as a bifunctional electrocatalyst,thereby outperforming a water electrolyzer that requires the usage of precious metal electrocatalysts(i.e.,Pt/C as the HER electrocatalyst and IrO_(2) as the OER electrocatalyst).Moreover,when driven by a commercial silicon solar cell,an alkaline water electrolyzer that uses S-NiFeOOH as a bifunctional electrocatalyst generated hydrogen under natural illumination.This study shows that S-NiFeOOH is a promising candidate for a large-scale industrial implementation of hydrogen production for overall water splitting because of its low cost,high activity,and durability.In addition,the solar-driven water electrolyzer using S-NiFeOOH as a bifunctional electrocatalyst affords the opportunity for developing effective and feasible solar power systems in the future. 展开更多
关键词 Overall water splitting Hydrogen production Sulfur incorporated NiFe(oxy)hydroxide ELECTROCATALYSTS solar-driven water splitting
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部