期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
An overview of photothermal materials for solar-driven interfacial evaporation 被引量:2
1
作者 Yiming Fang Huimin Gao +4 位作者 Kaiting Cheng Liang Bai Zhengtong Li Yadong Zhao Xingtao Xu 《Chinese Chemical Letters》 2025年第3期6-15,共10页
The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the p... The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the performance of solar energy evaporation and minimizing material degradation during application can be achieved through the design of novel photothermal materials.In solar interfacial evaporation,photothermal materials exhibit a wide range of additional characteristics,but a systematic overview is lacking.This paper encompasses an examination of various categories and principles pertaining to photothermal materials,as well as the structural design considerations for salt-resistant materials.Additionally,we discuss the versatile uses of this appealing technology in different sectors related to energy and the environment.Furthermore,potential solutions to enhance the durability of photothermal materials are also highlighted,such as the rational design of micro/nano-structures,the use of adhesives,the addition of anti-corrosion coatings,and the preparation of self-healing surfaces.The objective of this review is to offer a viable resolution for the logical creation of high-performance photothermal substances,presenting a guide for the forthcoming advancement of solar evaporation technology. 展开更多
关键词 solar-driven interfacial evaporation Desalination Wastewater treatment Photothermal material SALT-RESISTANCE Durability
原文传递
Solar-driven chemical looping for efficient CO_(2)conversion
2
作者 Qiong Rao Yuanhui Shen +1 位作者 Ying Pan Hongguang Jin 《Journal of Energy Chemistry》 2025年第4期866-876,共11页
Repurposing of carbon dioxide to valuable chemicals and fuels with the assistance of renewable energy is essential for balanced carbon cycle.Here,a new CO_(2)conversion strategy was demonstrated that utilized concentr... Repurposing of carbon dioxide to valuable chemicals and fuels with the assistance of renewable energy is essential for balanced carbon cycle.Here,a new CO_(2)conversion strategy was demonstrated that utilized concentrated solar energy to directly drive chemical looping reverse water gas shift process,which simultaneously coupled the photothermal and photochemical effects to achieve enhanced CO_(2)reduction reactivity and 100%CO selectivity.The solar-driven chemical looping CO_(2)reduction on Ni-Fe_(2)O_(3/)La_(0.8)Sr_(0.2)FeO_(3)exhibited great activity,with an average CO production rate of up to 0.28 mmol/g_(oc)/min at 283℃The product yield of the solar-driven reaction was almost 600%higher than that of the thermal reaction at the same temperature.The CO production overcame the thermodynamic equilibrium limitation under the combined impact of thermal and non-thermal effects of direct-light illumination.Light irradiation reinforced reactive gas adsorption and dissociation of carbonate intermediates,and stimulated oxygen ion migration and lattice oxygen transformation,thus promoting the reactivity.The concept of concentrated solar energy to drive chemical looping reverse water gas shift opens a new avenue for effective CO_(2)resource utilization and solar fuel production. 展开更多
关键词 Chemical looping reverse water gas shift solar-driven CO_(2)conversion Photochemistry effect Iron oxide-perovskite composite oxygen carrier
在线阅读 下载PDF
High-efficient solar-driven hydrogen production by full-spectrum synergistic photo-thermo-catalytic methanol steam reforming with in-situ photoreduced Pt-CuO_(x) catalyst 被引量:5
3
作者 Donghui Li Jie Sun +1 位作者 Rong Ma Jinjia Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期460-469,I0012,共11页
Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocataly... Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production. 展开更多
关键词 solar-driven Hydrogen production Photo-thermo-catalysis Copper oxide Methanol steam reforming Reaction kinetics optimization
在线阅读 下载PDF
Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling c-ray irradiation with borate crosslinking 被引量:1
4
作者 Yu-Qing Qiao Yu Gu +3 位作者 Yu-Sen Meng Hai-Xia Li Bo-Wu Zhang Jing-Ye Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第12期13-25,共13页
Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs tha... Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs that was modified by polyvinyl alcohol(PVA)under c-ray irradiation on a cellulose acetate microporous membrane,followed by borate crosslinking.Fourier transform infrared spectroscopy,Raman spectroscopy,and thermogravimetry confirmed the success of PVA grafting onto MWCNTs and borate crosslinking between modified MWCNT nanoyarns.The as-prepared crosslinked MWCNT bucky papers(BBP membranes)were used as a solar absorber,by placing them on a paper-wrapped floating platform,for interfacial water evaporation under simulated solar irradiation.The BBP membranes showed good water tolerance and mechanical stability,with an evaporation rate of 0.79 kg m^(-2)h^(-1)and an evaporation efficiency of 56%under 1 sun illumination in deionized water.Additionally,the BBP membranes achieved an evaporation rate of 0.76 kg m^(-2)h^(-1)in both NaCl solution(3.5 wt%)and sulfuric acid solution(1 mol L-1),demonstrating their impressive applicability for water reclamation from brine and acidic conditions.An evaporation rate of 0.70 kg m-2 h-1(very close to that from deionized water)was obtained from the solar evaporation of saturated NaCl solution,and the BBP membrane exhibited unexpected stability without the inference of salt accumulation on the membrane surface during long-term continuous solar evaporation. 展开更多
关键词 c-ray irradiation Multi-walled carbon nanotubes Bucky paper solar-driven interfacial water evaporation Desalination
在线阅读 下载PDF
Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification 被引量:1
5
作者 Ying Guo Congqi Li +2 位作者 Peiling Wei Kai Hou Meifang Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第11期10-18,共9页
Interfacial solar-driven evaporators have presented great potential for water purification owing to their low energy consumption and high steam generation efficiency. However, their further applications are hindered b... Interfacial solar-driven evaporators have presented great potential for water purification owing to their low energy consumption and high steam generation efficiency. However, their further applications are hindered by the high costs and complicated fabrication processes. Here, a scalable bilayer interfacial evaporator was constructed via an affordable technique, in which carbon black deposited nonwoven fabric(CB@NF) was employed as the upper photothermal layer, as well as PVA/starch hybrid hydrogel for selffloating and water transport. Under simulated one sun irradiation, CB@NF layer displayed excellent photothermal conversion performance, whose temperature could increase 30.4 ℃ within 15 min. Moreover,the introduction of starch into PVA endowed the hybrid hydrogels with considerable water-absorption capability on the premise of ensuring mechanical properties. The resultant CB@NF/PVA/starch composites achieved superior interfacial adhesion performance with interfacial toughness at about 200 J m.Combining with good evaporation performance, salt-rejection property and high purification efficiency on pollutants, this evaporation system would become a promising candidate to alleviate water shortage. 展开更多
关键词 Fabric/hydrogel composite Interfacial solar-driven evaporation Water purification
原文传递
Harnessing overlapped temperature-salinity gradient in solar-driven interfacial seawater evaporation for efficient steam and electricity generation
6
作者 Peida Li Dongtong He +2 位作者 Jingchang Sun Jieshan Qiu Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期694-700,I0015,共8页
Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad... Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold. 展开更多
关键词 solar-driven interfacial water evaporation Steam generation Electricity generation Seawater
在线阅读 下载PDF
Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion
7
作者 Jun Xu Farzaneh Arabpour Roghabadi +4 位作者 Ying Luo Vahid Ahmadi Qian Wang Zheng Wang Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期165-182,共18页
Solar-driven carbon dioxide(CO_(2))conversion including photocatalytic(PC),photoelectrochemical(PEC),photovoltaic plus electrochemical(PV/EC)systems,offers a renewable and scalable way to produce fuels and high-value ... Solar-driven carbon dioxide(CO_(2))conversion including photocatalytic(PC),photoelectrochemical(PEC),photovoltaic plus electrochemical(PV/EC)systems,offers a renewable and scalable way to produce fuels and high-value chemicals for environment and energy sustainability.This review summarizes the basic fundament and the recent advances in the field of solar-driven CO_(2)conversion.Expanding the visible-light absorption is an important strategy to improve solar energy conversion efficiency.The separation and migration of photogenerated charges carriers to surface sites and the surface catalytic processes also determine the photocatalytic performance.Surface engineering including co-catalyst loading,defect engineering,morphology control,surface modification,surface phase junction,and Z-scheme photocatalytic system construction,have become fundamental strategies to obtain high-efficiency photocatalysts.Similar to photocatalysis,these strategies have been applied to improve the conversion efficiency and Faradaic efficiency of typical PEC systems.In PV/EC systems,the electrode surface structure and morphology,electrolyte effects,and mass transport conditions affect the activity and selectivity of electrochemical CO_(2)reduction.Finally,the challenges and prospects are addressed for the development of solar-driven CO_(2)conversion system with high energy conversion efficiency,high product selectivity and stability. 展开更多
关键词 solar-driven CO_(2)reduction Photocatalytic system Photoelectrochemical system Photovoltaic plus electrochemical system Surface/interface engineering
原文传递
Solar-Driven Water Treatment: New Technologies, Challenges, and Futures
8
作者 Djamel Ghernaout Sara Irki +1 位作者 Noureddine Elboughdiri Badia Ghernaout 《Green and Sustainable Chemistry》 CAS 2023年第2期110-152,共43页
In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar de... In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar desalination technologies include solar-powered humidification–dehumidification, multi-stage flash desalination, multi-effect desalination, RO, and solar stills. Each technology’s productivity, energy consumption, and water production costs are presented. Also, common methods of solar water disinfection have been reviewed as one of the common and low-cost methods of water treatment, especially in areas with no access to drinking water. However, although desalination technologies have many social, economic, and public health benefits, they are energy-intensive and negatively affect the environment. In addition, the disposal of brine from the desalination processes is one of the most challenging and costly issues. In this regard, the environmental effects of desalination technologies are presented and discussed. Among direct solar water desalination technologies, solar still technology is a low-cost, low-tech, and low-investment method suitable for remote areas, especially in developing countries with low financial support and access to skilled workers. Indirect solar-driven water desalination technologies, including thermal and membrane technologies, are more reliable and technically more mature. Recently, RO technology has received particular attention thanks to its lower energy demand, lower cost, and available solutions to increase membrane durability. Disposal of brines can account for much of the water cost and potentially negatively affect the environment. Therefore, in addition to efforts to improve the efficiency and reduce the cost of solar technologies and water treatment processes, future research studies should consider developing new solutions to this issue. 展开更多
关键词 Renewable Energy (RE) solar-driven Desalination Solar Water Disinfection (SODIS) BRINE Greenhouse Gases (GHGs) Reverse Osmosis (RO)
在线阅读 下载PDF
Shaping the future of solar-driven photocatalysis by reticular framework materials
9
作者 Alamgir Nouraiz Mushtaq +5 位作者 Abrar Ahmad Javaria Khayaban E Erum Lan Li Jinjie Qian Xusheng Wang Junkuo Gao 《Journal of Materials Science & Technology》 2025年第28期193-244,共52页
Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic a... Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field. 展开更多
关键词 Reticular framework materials solar-driven photocatalysis CO_(2)RR(CO_(2)reduction reaction) HER(Hydrogen evolution reaction) H_(2)O_(2) N_(2)fixation
原文传递
Multifunctional Chinese ink-coated viscose fiber composite for evaporation-driven electricity generation and solar-driven steam generation
10
作者 Mingcen Weng Jiahao Zhou +7 位作者 Wei Yu Bingzheng Zhang Qunpu Zou Minghua You Peidi Zhou Chan Zheng Yun Xu Huamin Chen 《Nano Research》 2025年第5期680-692,共13页
Technologies for evaporation-driven electricity generation and solar-driven steam generation exhibit significant potential for addressing energy crises and freshwater shortages.Nevertheless,it is still a challenge to ... Technologies for evaporation-driven electricity generation and solar-driven steam generation exhibit significant potential for addressing energy crises and freshwater shortages.Nevertheless,it is still a challenge to develop multifunctional materials for efficient energy generation and seawater desalination via economical and simple methods.Here,we propose a Chinese ink-coated viscose fiber composite(Ink@VF),suitable for direct applications in evaporation-driven electricity generators(EEGs)and solar-driven steam generators(SSGs).The Ink@VF prepared by a simple dip-dyeing method exhibits excellent mechanical properties(Young’s modulus of 18.1 GPa),hydrophilicity,electrical conductivity(36.51Ω/sq),and photothermal conversion properties.Based on the synergy of water evaporation,capillary effect,and electric double layer(EDL)electrokinetic effect,the Ink@VF-based EEG can achieve a maximum open-circuit voltage(V_(oc))of 0.65 V and an optimal power density of 43.72 mW/m^(2)with 1 mol/L NaCl solution.It can also be integrated in series to develop a self-powered bracelet.Simultaneously,the evaporation rate and solar energy conversion efficiency of the Ink@VF-based SSG can reach 1.32 kg/(m^(2)·h)and 84.9%under 1 sun irradiation,respectively.Through utilizing the evaporation-condensation mechanism,it can achieve freshwater generation at a rate of 1.49 kg/(m^(2)·h)and metal ion removal in excess of 99.9%.This study provides a low-cost and efficient solution to the energy crisis and freshwater shortage in resource-poor remote areas by utilizing inexhaustible natural resources. 展开更多
关键词 MULTIFUNCTIONAL Chinese ink viscose fiber evaporation-driven electricity generation solar-driven steam generation
原文传递
Structure development of carbon-based solar-driven water evaporation systems 被引量:20
11
作者 Wen He Lei Zhou +3 位作者 Miao Wang Yang Cao Xuemei Chen Xu Hou 《Science Bulletin》 SCIE EI CSCD 2021年第14期1472-1483,M0004,共13页
Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation... Pressing need goes ahead for accessing freshwater in insufficient supply countries and regions,which will become a restrictive factor for human development and production.In recent years,solar-driven water evaporation(SDWE)systems have attracted increasing attention for their specialty in no consume conventional energy,pollution-free,and the high purity of fresh water.In particular,carbon-based photothermal conversion materials are preferred light-absorbing material for SDWE systems because of their wide range of spectrum absorption and high photothermal conversion efficiency based on superconjugate effect.Until now,many carbon-based SDWE systems have been reported,and various structures emerged and were designed to enhance light absorption,optimize heat management,and improve the efficient water transport path.In this review,we attempt to give a comprehensive summary and discussions of structure progress of the carbon-based SDWE systems and their working mechanisms,including carbon nanoparticles systems,single-layer photothermal membrane systems,bi-layer structural photothermal systems,porous carbon-based materials systems,and three dimensional(3D)systems.In these systems,the latest 3D systems can expand the light path by allowing light to be reflected multiple times in the microcavity to increase the light absorption rate,and its large heat exchange area can prompt more water to evaporate,which makes them the promising application foreground.We hope our review can spark the probing of underlying principles and inspiring design strategies of these carbonbased SDWE systems,and further guide device optimizations,eventually promoting in extensive practical applications in the future. 展开更多
关键词 Carbon-based evaporator solar-driven Photothermal conversion Desalination Structure development
原文传递
Engineering oxygen vacancy on rutile TiO_2 for efficient electron-hole separation and high solar-driven photocatalytic hydrogen evolution 被引量:13
12
作者 Fang Xiao1 Wei Zhou2 +5 位作者 Bojing Sun2 Haoze Li2 Panzhe Qiao2 Liping Ren2 Xiaojun Zhao1 Honggang Fu2 《Science China Materials》 SCIE EI CSCD 2018年第6期822-830,共9页
Oxygen vacancy(VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO(0–2.18%) are fabricated via an insitu solid-state chemical reduction strategy, wit... Oxygen vacancy(VO) plays a vital role in semiconductor photocatalysis. Rutile TiO2 nanomaterials with controllable contents of VO(0–2.18%) are fabricated via an insitu solid-state chemical reduction strategy, with color from white to black. The bandgap of the resultant rutile TiO2 is reduced from 3.0 to 2.56 e V, indicating the enhanced visible light absorption. The resultant rutile TiO2 with optimal contents of VO(2.07%) exhibits a high solar-driven photocatalytic hydrogen production rate of 734 μmol h-1, which is about four times as high as that of the pristine one(185 μmol h-1). The presence of VOelevates the apparent Fermi level of rutile TiO2 and promotes the efficient electronhole separation obviously, which favor the escape of photogenerated electrons and prolong the life-time(7.6×103 ns) of photogenerated charge carriers, confirmed by scanning Kelvin probe microscopy, surface photovoltage spectroscopy and transient-state fluorescence. VO-mediated efficient photogenerated electron-hole separation strategy may provide new insight for fabricating other high-performance semiconductor oxide photocatalysts. 展开更多
关键词 oxygen vacancy rutile TiO2 surface engineering solar-driven photocatalysis hydrogen evolution
原文传递
Antibacterial evaporator based on reduced graphene oxide/polypyrrole aerogel for solar-driven desalination 被引量:5
13
作者 Mengru Zhang Fan Xu +9 位作者 Wenjie Liu Yaqi Hou Liyun Su Xin Zhang Ruihua Zhang Lijun Zhou Xiaomei Yan Miao Wang Xu Hou Yang Cao 《Nano Research》 SCIE EI CSCD 2023年第4期4219-4224,共6页
Solar-driven water evaporation is a sustainable method to purify seawater.Nevertheless,traditional volumetric water-evaporation systems suffer from the poor sunlight absorption and inefficient light-to-thermal convers... Solar-driven water evaporation is a sustainable method to purify seawater.Nevertheless,traditional volumetric water-evaporation systems suffer from the poor sunlight absorption and inefficient light-to-thermal conversion.Also,their anti-bacterial and antifouling performances are crucial for the practical application.Herein,we introduce reduced graphene oxide(RGO)with broadband absorbance across the entire solar spectrum,and polypyrrole(PPy),an antibacterial polymer with efficient solar absorption and low thermal conductivity,to develop integrated RGO/PPy aerogel as both the solar absorber and evaporator for highly efficient solar-driven steam generation.As a result,the RGO/PPy aerogel shows strong absorption and good photothermal performance,leading to an evaporation rate of 1.44 kg·m^(−2)·h^(−1)and high salt rejection(up to 99.99%)for real seawater,with photothermal conversion efficiency>90%under one sun irradiation.The result is attributed to the localized heat at the air-water interface by the RGO/PPy and its porous nature with functional groups that facilitates the water evaporation.Moreover,the RGO/PPy demonstrates excellent durability and antibacterial efficiency close to 100%for 12 h,crucial characteristics for longterm application.Our well-designed RGO/PPy aerogel with efficient water desalination performance and antibacterial property provides a straightforward approach to improve the solar-driven evaporation performance by multifunctional materials integration,and offers a viable route towards practical seawater desalination. 展开更多
关键词 solar-driven steam generation interfacial heating antibacterial property graphene-based material POLYPYRROLE
原文传递
Solar-driven high-efficiency remediation of wastewater containing small dye molecules 被引量:4
14
作者 WANG ZuBin LIU Kang +1 位作者 HENG LiPing JIANG Lei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第10期2237-2245,共9页
Remediation of wastewater containing dye molecules is necessary to alleviate the significant threat that poses to human health and the environment.Current treatment technologies are seriously limited by their low effi... Remediation of wastewater containing dye molecules is necessary to alleviate the significant threat that poses to human health and the environment.Current treatment technologies are seriously limited by their low efficiency for removing small dye molecules or/and inferior regenerability.Herein,we report a bio-inspired,solar-driven,regenerable separation device capable of separating small dye molecules from the wastewater with high efficiency.The device is composed of porous super-hydrophilic ceramic and carbon nanotubes(CNTs).In comparison with previously reported systems,the resultant device not only achieved a highly promising separation efficiency of>99%for dye-containing wastewater,even for small dye molecules(<1.25 nm),but also demonstrated excellent separation stability and strong resistance to acid/alkali.Moreover,the device demonstrated impressive regenerability on simple calcination and re-coating of the CNT layer after it was blocked.This novel separation device shows potential for application in many fields,such as dye separation,wastewater purification and desalination. 展开更多
关键词 dye separation wastewater purification solar-driven remediation high efficiency regenerability
原文传递
Biosynthetic CdS-Thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation 被引量:4
15
作者 Guangyu Liu Feng Gao +3 位作者 Hongwei Zhang Lei Wang Chao Gao Yujie Xiong 《Nano Research》 SCIE EI CSCD 2023年第4期4531-4538,共8页
Synergistically combining biological whole-cell bacteria with man-made semiconductor materials innovates the way for sustainable solar-driven CO_(2)fixation,showing great promise to break through the bottleneck in tra... Synergistically combining biological whole-cell bacteria with man-made semiconductor materials innovates the way for sustainable solar-driven CO_(2)fixation,showing great promise to break through the bottleneck in traditional chemical photocatalyst systems.However,most of the biohybrids require uneconomical organic nutrients and anaerobic conditions for the successful cultivation of the bacteria to sustain the CO_(2)fixation,which severely limits their economic viability and applicability for practical application.Herein,we present an inorganic-biological hybrid system composed of obligate autotrophic bacteria Thiobacillus thioparus(T.thioparus)and CdS nanoparticles(NPs)biologically precipitated on the bacterial surface,which can achieve efficient CO_(2)fixation based entirely on cost-effective inorganic salts and without the restriction of anaerobic conditions.The optimized interface between CdS NPs and T.thioparus formed by biological precipitation plays an essential role for T.thioparus efficiently receiving photogenerated electrons from CdS NPs and thus changing the autotrophic way from chemoautotroph to photoautotroph.As a result,the CdS-T.thioparus biohybrid realizes the solar-driven CO_(2)fixation to produce multi-carbon glutamate synthase and biomass under visible-light irradiation with CO_(2)as the only carbon source.This work provides significant inspiration for the further exploration of the solar-driven self-replicating biocatalytic system to achieve CO_(2)fixation and conversion. 展开更多
关键词 biohybrids solar-driven CO_(2)fixation carbon cycle autotrophic bacteria Thiobacillus thioparus cadmium sulfide
原文传递
Enhanced photochemical performance of hexagonal WO_3 by metal-assisted S–O coupling for solar-driven water splitting 被引量:3
16
作者 杨晨熹 陈建峰 +1 位作者 曾晓飞 程道建 《Science China Materials》 SCIE EI CSCD 2018年第1期91-100,共10页
Hybrid density functional calculations was used to comprehensively study the electronic structure of S-,Snand Pb-monodoped and(Sn,S)-and(Pb,S)-codoped hexagonal WO_3(h-WO_3)in order to improve their visible ligh... Hybrid density functional calculations was used to comprehensively study the electronic structure of S-,Snand Pb-monodoped and(Sn,S)-and(Pb,S)-codoped hexagonal WO_3(h-WO_3)in order to improve their visible light photocatalytic activity.Results indicate that the(Sn,S)-and(Pb,S)-codoped h-WO_3 can realize a significant band gap reduction and prevent the formation of empty states in the valence band of h-WO_3,while Sn/Pb-monodoped h-WO_3 cannot,because in(Sn,S)-and(Pb,S)-codoping,the S-doping introduces the fully occupied S 3p states in the forbidden band gap of h-WO_3 and the acceptor metals(Sn and Pb)would assist the coupling of the introduced S with its nearest O.In particular,the(Sn,S)-codoped h-WO_3 has the narrowest band gap of 1.85 eV and highest reducing ability among the doped case.Moreover,the calculated optical absorption spectra show that(Sn,S)-codoping can improve the visible light absorption.In short,these results indicate that the(Sn,S)-codoped h-WO_3 is a promising material in solar-driven water splitting. 展开更多
关键词 hexagonal WO3 hybrid density functional calculation electronic structure solar-driven water splitting
原文传递
A bifunctional wood membrane modified by MoS_(2)/covalent organic framework heterojunctions for effective solar-driven water evaporation and contaminant degradation
17
作者 Ziwei Cui Jianfei Wu +7 位作者 Haoran Li Yaning Xu Tiantian Wu Lixing Kang Qing Huang Yahui Cai Jianzhang Li Dan Tian 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第6期2111-2120,共10页
Interfacial solar evaporation technology is considered one of the most promising strategies for alleviating the scarcity of freshwater resources.However,solar-driven evaporation technology cannot eliminate the polluta... Interfacial solar evaporation technology is considered one of the most promising strategies for alleviating the scarcity of freshwater resources.However,solar-driven evaporation technology cannot eliminate the pollutants in the residual wastewater.To solve this problem,we have prepared a two-in-one solar-driven evaporation/photocatalysis system by decorating MoS_(2)/covalent organic framework(COF)heterojunctions on wood(MoS_(2)/COF-wood).Thanks to the unique porous structure of wood,it provides a strong guarantee for water transport and vapor release during the evaporation process.The introduction of MoS_(2) and COFs can promote the breaking of hydrogen bonds between water molecules,which leads to a significant decrease in the enthalpy of evaporation,achieving a water evaporation rate as high as 2.17 kg m^(-2)h^(-1)under 1 sun irradiation.Meanwhile,the resulting MoS_(2)/COF-wood exhibits good salt resistance and reusability.In addition,the heterojunctions formed between COFs and MoS_(2) can effectively inhibit charge carrier complexation and improve the photocatalytic degradation ability of pollutants(over 99%).This study highlights the construction strategy of bifunctional wood-based materials for freshwater production and wastewater remediation. 展开更多
关键词 covalent organic framework MoS_(2) WOOD photocatalysis solar-driven evaporation
原文传递
Multifunction Zno/carbon hybrid nanofiber mats for organic dyes treatment via photocatalysis with enhanced solar-driven evaporation
18
作者 Wenxin WANG Yang CHEN +4 位作者 Ning WANG Zhiqiang DU Martin JENSEN Zihan AN Xianfeng LI 《Frontiers of Materials Science》 SCIE CSCD 2022年第4期93-104,共12页
ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment.However,its photocatalytic efficiency and surface s... ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment.However,its photocatalytic efficiency and surface stability limit further applicability.This paper uses a one-step carbonization method to prepare multifunctional ZnO/carbon hybrid nanofiber mats.The carbonization creates aπ-conjugated carbonaceous structure of the mats,which prolongs the electron recovery time of ZnO nanoparticles to yield improved photocatalytic efficiency.Further,the carbonization reduces the fiber diameter of the carbon hybrid nanofiber mats,which quadruples the specific surface area to yield enhanced adsorption and photocatalytic performance.At the same time,the prepared nanofiber mats can increase the evaporation rate of water under solar irradiation to a level of 1.46 kg·m^(-2)·h^(-1)with an efficiency of 91.9%.Thus,the nanofiber mats allow the facile incorporation of photocatalysts to clean contaminated water through adsorption,photodegradation,and interfacial heat-assisted distillation mechanisms. 展开更多
关键词 hybrid nanofiber mats zinc oxide PHOTOCATALYSIS solar-driven evaporation
原文传递
Interfacial solar-driven steam and electricity co-generation using Hydrangea-like graphene by salt-assisted carbonization of waste polylactic acid
19
作者 Huiyue Wang Xueying Wen +7 位作者 Kuankuan Liu Qiuxuan Liu Guixin Hu Huajian Liu Yan She Ran Niu Tao Tang Jiang Gong 《SusMat》 2024年第6期51-64,共14页
The interfacial solar steam generation and water evaporation-driven power generation are regarded as promising strategies to address energy crisis.However,it remains challenging to construct low-cost evaporators for f... The interfacial solar steam generation and water evaporation-driven power generation are regarded as promising strategies to address energy crisis.However,it remains challenging to construct low-cost evaporators for freshwater and electricity co-generation.Herein,we report a salt-assisted carbonization strategy of waste polylactic acid to prepare Hydrangea flower-like graphene and build a bi-functional graphene-based evaporator.The evaporator presents merits of good sunlight absorption,photo-to-thermal conversion property,water transport,good thermal management capability,and negatively charged pores for the continuous diffusion of ions.Hence,it achieves the evaporation rate of 3.0 kg m^(−2)h^(−1)and output voltage of 0.425 V,surpassing many advanced evaporators/generators.Molecular dynamics simulation result proves that more Na^(+)ions are attracted by functional groups,especially-COOH/C-OH,to promote Na^(+)selectivity in nanochannels.This work offers new opportunities to construct multifunctional evaporators for freshwater and electricity co-generation. 展开更多
关键词 GRAPHENE polylactic acid solar evaporator solar-driven interfacial steam generation water evaporation-driven power generation
原文传递
Pickering Emulsion-Driven MXene/Silk Fibroin Hydrogels with Programmable Functional Networks for EMI Shielding and Solar Evaporation
20
作者 Guang Yin Jing Wu +3 位作者 Chengzhang Qi Xinfeng Zhou Zhong-Zhen Yu Hao-Bin Zhang 《Nano-Micro Letters》 2025年第12期369-382,共14页
Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields.However,the controllable manipulation of functional electron/mass transport networks in hydrogels remains ... Flexible and conformable nanomaterial-based functional hydrogels find promising applications in various fields.However,the controllable manipulation of functional electron/mass transport networks in hydrogels remains rather challenging to realize.We describe a general and versatile surfactant-free emulsion construction strategy to customize robust functional hydrogels with programmable hierarchical structures.Significantly,the amphipathy of silk fibroin(SF)and the reinforcement effect of MXene nanosheets produce sable Pickering emulsion without any surfactant.The followed microphase separation and self-cross-linking of the SF chains induced by the solvent exchange convert the composite emulsions into high-performance hydrogels with tunable microstructures and functionalities.As a proof-of-concept,the controllable regulation of the ordered conductive network and the water polarization effect confer the hydrogels with an intriguing electromagnetic interference shielding efficiency(~64 dB).Also,the microstructures of functional hydrogels are modulated to promote mass/heat transfer properties.The amino acids of SF and the surface terminations of MXene help reduce the enthalpy of water evaporation and the hierarchical structures of the hydrogels accelerate evaporation process,expecting far superior evaporation performance(~3.5 kg m^(-2)h^(-1))and salt tolerance capability compared to other hydrogel evaporators.Our findings open a wealth of opportunities for producing functional hydrogel devices with integrated structure-dependent properties. 展开更多
关键词 MXene Silk fibroin Pickering emulsion Electromagnetic interference shielding solar-driven evaporation
暂未订购
上一页 1 2 8 下一页 到第
使用帮助 返回顶部