The introduction of two-dimensional(2D)perovskite layers on top of three-dimensional(3D)perovskite films enhances the performance and stability of perovskite solar cells(PSCs).However,the electronic effect of the spac...The introduction of two-dimensional(2D)perovskite layers on top of three-dimensional(3D)perovskite films enhances the performance and stability of perovskite solar cells(PSCs).However,the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results.In this study,we compared two fluorinated salts:4-(trifluoromethyl)benzamidine hydrochloride(4TF-BA·HCl)and 4-fluorobenzamidine hydrochloride(4F-BA·HCl)to engineer the 3D/2D perovskite films.Surprisingly,4F-BA formed a high-performance 3D/2D heterojunction,while4TF-BA produced an amorphous layer on the perovskite films.Our findings indicate that the balanced intramolecular charge polarization,which leads to effective hydrogen bonding,is more favorable in 4F-BA than in 4TF-BA,promoting the formation of a crystalline 2D perovskite.Nevertheless,4TF-BA managed to improve efficiency to 24%,surpassing the control device,primarily due to the natural passivation capabilities of benzamidine.Interestingly,the devices based on 4F-BA demonstrated an efficiency exceeding 25%with greater longevity under various storage conditions compared to 4TF-BA-based and the control devices.展开更多
In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy sy...In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.展开更多
Introducing a stoichiometric excess of lead iodide(PbI_(2))in perovskite films has been demonstrated as an effective passivation strategy that can improve the power conversion efficiency(PCE)of perovskite solar cells(...Introducing a stoichiometric excess of lead iodide(PbI_(2))in perovskite films has been demonstrated as an effective passivation strategy that can improve the power conversion efficiency(PCE)of perovskite solar cells(PSCs),However,excess PbI_(2)is also known to accelerate the degradation of the perovskite layer.In this study,we show that this degradation primarily stems from the decomposition of PbI_(2)at the bottom of the perovskite film which is exposed to light We further show that when using a two-step spin coating deposition procedure,the excess PbI_(2)results from the decomposition of the perovskite during the annealing process rather than the presence of non-reacted PbI_(2).Finally,we demonstrate that the spatial distribution of PbI_(2)within the perovskite films can be controlled in a way that mitigates the PbI_(2)induced perovskite decomposition.In this manner,we produced devices exhibiting initial power conversion efficiencies over 25%,maintaining 98.6% after 1000 h of maximum power point tracking under continuous illumination.These findings offer valuable insights into achieving high performance PSCs through judicious process control using a two-step spin-coating procedure.展开更多
Hydrogen peroxide(H_(2)O_(2)),as an essential and green chemical,is extensively used in energy and environmental applications.However,the production of H_(2)O_(2)primarily relies on the anthraquinone method,which is a...Hydrogen peroxide(H_(2)O_(2)),as an essential and green chemical,is extensively used in energy and environmental applications.However,the production of H_(2)O_(2)primarily relies on the anthraquinone method,which is an energy-intensive method involving multi-step reactions,producing harmful by-product wastes.Solar-driven H_(2)O_(2)production,an alternative route for H_(2)O_(2)generation,is a green and sustainable technology since it only utilizes water and oxygen as feedstock.However,the rapid recombination of charge carriers as well as insufficient redox capability limit the photocatalytic H_(2)O_(2)production performance.Constructing step-scheme(S-scheme)heterojunction photocatalysts has been regarded as an effective strategy to address these drawbacks because it not only achieves spatially separated charge carriers,but also preserves redox capability of the photocatalytic system.This paper covers the recent advances of S-scheme heterojunction photocatalysts for H_(2)O_(2)production in terms of basic principles,characterization techniques,and preparation strategies.Moreover,the mechanism and advantages of S-scheme heterojunction for photocatalytic H_(2)O_(2)generation are systematically discussed.The recent S-scheme heterojunction designs,including inorganic-organic heterojunction,inorganic-inorganic heterojunction,and organic-organic heterojunction,are summarized.Lastly,the challenges and research directions of S-scheme photocatalysts for H_(2)O_(2)generation are presented.展开更多
Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spa...Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.展开更多
To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a compar...To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a comparison model.This method enhances the precision of system calibration by establishing a dataset that delineates the relationship between secondary mirror misalignment and wavefront aberration,subsequently inferring the misalignment from interferometric detection results during the calibration process.For the 2-m ring telescope,we develop a detection model using five local sub-apertures,enabling a root-mean-square detection accuracy of 0:0225λ(λ=632:8 nm)for full-aperture wavefront aberration.The calibration results for the 2-m Ring Solar Telescope system indicate that the root-mean-square value of sub-aperture wavefront aberration reaches 0.104λ,and the root-mean-square value of spliced full-aperture measurement yields reaches 0.112λ.This method offers a novel approach for calibrating small width-toradius ratio telescope systems and can be applied to the calibration of other irregular-aperture optical systems.展开更多
The catalytic conversion of CO_(2)into high-value-added C1 products is vital for mitigating climate change and achieving carbon neutrality.Photothermal catalysis,integrating photochemical and thermochemical processes,...The catalytic conversion of CO_(2)into high-value-added C1 products is vital for mitigating climate change and achieving carbon neutrality.Photothermal catalysis,integrating photochemical and thermochemical processes,offers significant advantages in lowering reaction temperatures,enhancing catalytic performance,and steering reaction pathways by utilizing the full solar spectrum.Transition metal catalysts(TMCs),featuring strong solar absorption,efficient photothermal conversion,and unique CO_(2)activation capabilities,have emerged as promising candidates for this purpose.This review systematically summarizes the synthesis strategies of TMCs optimized for photothermal catalysis,the methodologies for deconvoluting light and heat contributions,and the underlying synergistic mechanisms between thermal and photo-induced processes.Recent advances in photothermal CO_(2)hydrogenation to C1 products,including CO,CH_(4),and CH_(3)OH,are discussed,with emphasis on structure-performance relationships and mechanistic insights.Finally,key challenges and future opportunities for designing next-generation TMCbased photothermal catalysts are highlighted,aiming to accelerate the sustainable transformation of CO_(2)under solar-driven conditions.展开更多
Sb_(2)S_(3)films are susceptible to the formation of nanogap defects during the crystallization process,leading to their experimental power conversion efficiency(PCE)falling significantly short of the theoretical limi...Sb_(2)S_(3)films are susceptible to the formation of nanogap defects during the crystallization process,leading to their experimental power conversion efficiency(PCE)falling significantly short of the theoretical limit.This investigation presents,a groundbreaking Sb_(2)S_(3)photovoltaic device model that integrates perovskite within these nanogaps,and systematically examines the mechanisms for enhancing the PCE.Our findings reveal that incorporating perovskite within the nanogaps yields a 10%enhancement in optical absorption performance.Furthermore,perovskite nanogaps function as effective electron transport channels,significantly reducing the recombination of photogenerated carriers within the highly defective Sb_(2)S_(3).The dimensions and arrangement of the nanochannels play a pivotal role in determining device performance,with optimal measurements of 5 nm in width and 15 nm in spacing.Additionally,this study examines the universality of the nanochannel structure.The projected PCE of this innovative structure is an impressive 25.40%.These findings provide valuable theoretical guidance for designing high-efficiency Sb_(2)S_(3)solar cells.展开更多
Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device pe...Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.展开更多
The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solutio...The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solution pH,dye concentration,dosage of TiO2 and nano-size of TiO2 have been studied.The increase in initial pH(3,5 and 11) and dye concentration decrease the removal rate.The treatment for FBB and FBL dye solutions is more efficient than that of S-RL.Under optimum conditions,the color removal is found to be almost complete for FBB and FBL while that of S-RL also reaches 95%.Langmuir adsorption isotherm and modified Langmuir-Hinshelwood kinetic model(L-H model) have been fitted to the experimental data and found to correlate the adsorption patterns as well as the kinetics of the dyes studied.展开更多
To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mong...To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mongolia, the research used traditional solar greenhouse (A) and blanket-inside solar greenhouse(B), and set 4 treatments: AE (traditional solar greenhouse A with CO2 enrichment), AN (traditional solar greenhouse A without CO2 enrichment), BE (blanket-inside solar greenhouse B with CO2 enrichment) and BN (blanket-inside solar greenhouse B without CO2 enrichment), to explore the influence of cucumber growth, photosynthetic property, quality and yield in different structure solar greenhouses with CO2 enrichment. The results showed that the illumination and temperature in blanket-inside solar greenhouse was superior to traditional solar greenhouse, and the average light intensity in blanket-inside solar greenhouse increased by 21.05%, compared with traditional solar greenhouse. Under the condition of same greenhouse structure, stem height ,average stem diameter, contents of soluble sugar, vitamin C, net photosynthetic rate and yield showed any significant difference between the treatments with CO2 enrichment or not. Under the condition of same CO2 concentration, BE cucumber average stem height, average stem diameter, contents of soluble sugar, net photosynthetic rate and yield in BE was higher than which in AE. Therefore, the optimization in structure of blanket-inside solar greenhouse remarkably improved illumination and temperature property, combining with CO2 enrichment as application technology, there was crucial significance to promote the greenhouse performance and improve the efficiency of greenhouse vegetable production.展开更多
CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties ...CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.展开更多
The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage ...The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.展开更多
Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminesce...Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminescence (TRPL) spectra revealed that the TiO2 NSs are more effective than TiO2 nanoparticles in accepting electrons from perovskite. Moreover. the TiO2 nanospindles further endowed the PSCs with good reproducibility and suppressed hysteresis. The best device with TiO2 NSs as ETMs yielded power conversion efficiency (PCE) of 19.6%, demonstrating that the home-made TiO2 NSs is a good ETM for PSCs.展开更多
Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crysta...Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.展开更多
基金supported by the National Key Research and Development Programs-Intergovernmental International Cooperation in Science and Technology Innovation Project(Grant No.2022YFE0118400)the Natural Science Foundation of Hunan Province(2023JJ50132)+1 种基金Shenzhen Science and Technology Innovation Committee(Grants Nos.JCYJ20220818100211025,and KCXST20221021111616039)Shenzhen Science and Technology Program(No.20231128110928003)。
文摘The introduction of two-dimensional(2D)perovskite layers on top of three-dimensional(3D)perovskite films enhances the performance and stability of perovskite solar cells(PSCs).However,the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results.In this study,we compared two fluorinated salts:4-(trifluoromethyl)benzamidine hydrochloride(4TF-BA·HCl)and 4-fluorobenzamidine hydrochloride(4F-BA·HCl)to engineer the 3D/2D perovskite films.Surprisingly,4F-BA formed a high-performance 3D/2D heterojunction,while4TF-BA produced an amorphous layer on the perovskite films.Our findings indicate that the balanced intramolecular charge polarization,which leads to effective hydrogen bonding,is more favorable in 4F-BA than in 4TF-BA,promoting the formation of a crystalline 2D perovskite.Nevertheless,4TF-BA managed to improve efficiency to 24%,surpassing the control device,primarily due to the natural passivation capabilities of benzamidine.Interestingly,the devices based on 4F-BA demonstrated an efficiency exceeding 25%with greater longevity under various storage conditions compared to 4TF-BA-based and the control devices.
基金State Grid Gansu Electric Power Company Science and Technology Program(Grant No.W24FZ2730008)National Natural Science Foundation of China(Grant No.51767017).
文摘In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.
基金funding support from the National Key R&D Program of China(2021YFF0501900)the Excellent Young Scholar Fund from the National Natural Science Foundation of China(22122903)+1 种基金the Tianjin Distinguished Young Scholar Fund(20JCJQJC00260)support from the Tianchi Talent Program of Xinjiang Uygur Autonomous Region。
文摘Introducing a stoichiometric excess of lead iodide(PbI_(2))in perovskite films has been demonstrated as an effective passivation strategy that can improve the power conversion efficiency(PCE)of perovskite solar cells(PSCs),However,excess PbI_(2)is also known to accelerate the degradation of the perovskite layer.In this study,we show that this degradation primarily stems from the decomposition of PbI_(2)at the bottom of the perovskite film which is exposed to light We further show that when using a two-step spin coating deposition procedure,the excess PbI_(2)results from the decomposition of the perovskite during the annealing process rather than the presence of non-reacted PbI_(2).Finally,we demonstrate that the spatial distribution of PbI_(2)within the perovskite films can be controlled in a way that mitigates the PbI_(2)induced perovskite decomposition.In this manner,we produced devices exhibiting initial power conversion efficiencies over 25%,maintaining 98.6% after 1000 h of maximum power point tracking under continuous illumination.These findings offer valuable insights into achieving high performance PSCs through judicious process control using a two-step spin-coating procedure.
文摘Hydrogen peroxide(H_(2)O_(2)),as an essential and green chemical,is extensively used in energy and environmental applications.However,the production of H_(2)O_(2)primarily relies on the anthraquinone method,which is an energy-intensive method involving multi-step reactions,producing harmful by-product wastes.Solar-driven H_(2)O_(2)production,an alternative route for H_(2)O_(2)generation,is a green and sustainable technology since it only utilizes water and oxygen as feedstock.However,the rapid recombination of charge carriers as well as insufficient redox capability limit the photocatalytic H_(2)O_(2)production performance.Constructing step-scheme(S-scheme)heterojunction photocatalysts has been regarded as an effective strategy to address these drawbacks because it not only achieves spatially separated charge carriers,but also preserves redox capability of the photocatalytic system.This paper covers the recent advances of S-scheme heterojunction photocatalysts for H_(2)O_(2)production in terms of basic principles,characterization techniques,and preparation strategies.Moreover,the mechanism and advantages of S-scheme heterojunction for photocatalytic H_(2)O_(2)generation are systematically discussed.The recent S-scheme heterojunction designs,including inorganic-organic heterojunction,inorganic-inorganic heterojunction,and organic-organic heterojunction,are summarized.Lastly,the challenges and research directions of S-scheme photocatalysts for H_(2)O_(2)generation are presented.
基金support from the National Key R&D Program of China(Grant No.2023YFE0111500)the National Natural Science Foundation of China(Grant No.52321006,T2394480,T2394484,22109143,22479131)+8 种基金Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202005)the China Postdoctoral Innovative Talent Support Program(Grant No.BX2021271)the China Postdoctoral Science Foundation(2022M712851)the Opening Project of State Key Laboratory of Advanced Technology for Float Glass(Grant No.2022KF04)Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX136Y)Key R&D Special Program of Henan Province(Grant No.241111242000)Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.25HASTIT005)Training Plan for Young Backbone Teachers of Zhengzhou University(Grant No.2023ZDGGJS017)the Joint Research Project of Puyang Shengtong Juyuan New Materials Co.,Ltd.(Grant No.20230128A).
文摘Organic-inorganic hybrid perovskite solar cells achieve remarkable efficiencies(>26%)yet face stability challenges.Quasi-2D alternating-cation-interlayer perovskites offer enhanced stability through hydrophobic spacer cations but suffer from vertical phase segregation and buried interface defects.Herein,we introduce dicyanodiamide(DCD)to simultaneously address these dual limitations in GA(MA)_(n)Pb_(n)I_(3n+1)perovskites.The guanidine group in DCD passivates undercoordinated Pb^(2+)and MA^(+)vacancies at the perovskite/TiO_(2)interface,while cyano groups eliminate oxygen vacancies in TiO_(2)via Ti^(4+)-CN coordination,reducing interfacial trap density by 73%with respect to the control sample.In addition,DCD regulates crystallization kinetics,suppressing low-n-phase aggregation and promoting vertical alignment of high-n phases,which benefit for carrier transport.This dual-functional modification enhances charge transport and stabilizes energy-level alignment.The optimized devices achieve a record power conversion efficiency of 21.54%(vs.19.05%control)and retain 94%initial efficiency after 1200 h,outperforming unmodified counterparts(84%retention).Combining defect passivation with phase homogenization,this work establishes a molecular bridge strategy to decouple stability-efficiency trade-offs in low-dimensional perovskites,providing a universal framework for interface engineering in high-performance optoelectronics.
基金supported by the Jiangsu Provincial Key Research and Development Program(BE2022072)the National Natural Science Foundation of China(12141304)the Natural Science Foundation of Jiangsu Province(BK20231134).
文摘To address the installation challenges of a 2-m ring Gregorian telescope system,and similar optical systems with a small width-to-radius ratio,we propose a detection method combining local interferometry with a comparison model.This method enhances the precision of system calibration by establishing a dataset that delineates the relationship between secondary mirror misalignment and wavefront aberration,subsequently inferring the misalignment from interferometric detection results during the calibration process.For the 2-m ring telescope,we develop a detection model using five local sub-apertures,enabling a root-mean-square detection accuracy of 0:0225λ(λ=632:8 nm)for full-aperture wavefront aberration.The calibration results for the 2-m Ring Solar Telescope system indicate that the root-mean-square value of sub-aperture wavefront aberration reaches 0.104λ,and the root-mean-square value of spliced full-aperture measurement yields reaches 0.112λ.This method offers a novel approach for calibrating small width-toradius ratio telescope systems and can be applied to the calibration of other irregular-aperture optical systems.
基金financially supported by the National Natural Science Foundation of China(22172069 and 22106085,and 22035009)。
文摘The catalytic conversion of CO_(2)into high-value-added C1 products is vital for mitigating climate change and achieving carbon neutrality.Photothermal catalysis,integrating photochemical and thermochemical processes,offers significant advantages in lowering reaction temperatures,enhancing catalytic performance,and steering reaction pathways by utilizing the full solar spectrum.Transition metal catalysts(TMCs),featuring strong solar absorption,efficient photothermal conversion,and unique CO_(2)activation capabilities,have emerged as promising candidates for this purpose.This review systematically summarizes the synthesis strategies of TMCs optimized for photothermal catalysis,the methodologies for deconvoluting light and heat contributions,and the underlying synergistic mechanisms between thermal and photo-induced processes.Recent advances in photothermal CO_(2)hydrogenation to C1 products,including CO,CH_(4),and CH_(3)OH,are discussed,with emphasis on structure-performance relationships and mechanistic insights.Finally,key challenges and future opportunities for designing next-generation TMCbased photothermal catalysts are highlighted,aiming to accelerate the sustainable transformation of CO_(2)under solar-driven conditions.
基金Project(52203250)supported by the National Natural Science Foundation of ChinaProject(BS2024074)supported by the Ordos City New Energy Strategic Leading Technology Special Project,China+3 种基金Project(2025YFHH0119)supported by the Key Research and Development and Achievement Transformation Program of Inner Mongolia Autonomous Region,ChinaProject(2022ZY0187)supported by the Central Guiding Local Science and Technology Development Fund of Inner Mongolia Autonomous Region,ChinaProject(JY20220211)supported by the Basic Study Fund of Universities of Inner Mongolia Autonomous Region,ChinaProjects(JBGS-2023-005,JY20230026)supported by the Major“Unveiling”Project of Ordos City,China。
文摘Sb_(2)S_(3)films are susceptible to the formation of nanogap defects during the crystallization process,leading to their experimental power conversion efficiency(PCE)falling significantly short of the theoretical limit.This investigation presents,a groundbreaking Sb_(2)S_(3)photovoltaic device model that integrates perovskite within these nanogaps,and systematically examines the mechanisms for enhancing the PCE.Our findings reveal that incorporating perovskite within the nanogaps yields a 10%enhancement in optical absorption performance.Furthermore,perovskite nanogaps function as effective electron transport channels,significantly reducing the recombination of photogenerated carriers within the highly defective Sb_(2)S_(3).The dimensions and arrangement of the nanochannels play a pivotal role in determining device performance,with optimal measurements of 5 nm in width and 15 nm in spacing.Additionally,this study examines the universality of the nanochannel structure.The projected PCE of this innovative structure is an impressive 25.40%.These findings provide valuable theoretical guidance for designing high-efficiency Sb_(2)S_(3)solar cells.
基金conducted under the framework of the research and development program of the Korea Institute of Energy Research(C4-2412 and C4-2413)supported by the National Research Foundation of Korea(grant number 2022M3J1A1063019)funded by the Ministry of Science and ICT.
文摘Attempts to remove environmentally harmful materials in mass production industries are always a major issue and draw attention if the substitution guarantees a chance to lower fabrication cost and to improve device performance,as in a wide bandgap Zn_(1-x)Mg_(x)O(ZMO)to replace the CdS buffer in Cu(In_(1-x),Ga_(x))Se_(2)(CIGSe)thin-film solar cell structure.ZMO is one of the candidates for the buffer material in CIGSe thin-film solar cells with a wide and controllable bandgap depending on the Mg content,which can be helpful in attaining a suitable conduction band offset.Hence,compared to the fixed and limited bandgap of a CdS buffer,a ZMO buffer may provide advantages in V_(oc) and J_(sc) based on its controllable and wide bandgap,even with a relatively wider bandgap CIGSe thin-film solar cell.In addition,to solve problems with the defect sites at the ZMO/CIGSe junction interface,a few-nanometer ZnS layer is employed for heterojunction interface passivation,forming a ZMO/ZnS buffer structure by atomic layer deposition(ALD).Finally,a Cd-free all-dry-processed CIGSe solar cell with a wider bandgap(1.25 eV)and ALD-grown buffer structure exhibited the best power conversion efficiency of 19.1%,which exhibited a higher performance than the CdS counterpart.
文摘The degradation and decolourization of direct dye(Everdirect supra turguoise blue,FBL),acidic dye(Isolan orange S-RL) and vat dye(Indanthren red FBB) have been investigated by solar/TiO2 process.The effects of solution pH,dye concentration,dosage of TiO2 and nano-size of TiO2 have been studied.The increase in initial pH(3,5 and 11) and dye concentration decrease the removal rate.The treatment for FBB and FBL dye solutions is more efficient than that of S-RL.Under optimum conditions,the color removal is found to be almost complete for FBB and FBL while that of S-RL also reaches 95%.Langmuir adsorption isotherm and modified Langmuir-Hinshelwood kinetic model(L-H model) have been fitted to the experimental data and found to correlate the adsorption patterns as well as the kinetics of the dyes studied.
文摘To evaluate the effects of solar greenhouse with different structure and CO2 enrichment on illumination and temperature performance of greenhouse and cucumber growth and development in the central region of Inner Mongolia, the research used traditional solar greenhouse (A) and blanket-inside solar greenhouse(B), and set 4 treatments: AE (traditional solar greenhouse A with CO2 enrichment), AN (traditional solar greenhouse A without CO2 enrichment), BE (blanket-inside solar greenhouse B with CO2 enrichment) and BN (blanket-inside solar greenhouse B without CO2 enrichment), to explore the influence of cucumber growth, photosynthetic property, quality and yield in different structure solar greenhouses with CO2 enrichment. The results showed that the illumination and temperature in blanket-inside solar greenhouse was superior to traditional solar greenhouse, and the average light intensity in blanket-inside solar greenhouse increased by 21.05%, compared with traditional solar greenhouse. Under the condition of same greenhouse structure, stem height ,average stem diameter, contents of soluble sugar, vitamin C, net photosynthetic rate and yield showed any significant difference between the treatments with CO2 enrichment or not. Under the condition of same CO2 concentration, BE cucumber average stem height, average stem diameter, contents of soluble sugar, net photosynthetic rate and yield in BE was higher than which in AE. Therefore, the optimization in structure of blanket-inside solar greenhouse remarkably improved illumination and temperature property, combining with CO2 enrichment as application technology, there was crucial significance to promote the greenhouse performance and improve the efficiency of greenhouse vegetable production.
文摘CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.
基金supported by the Major State Basic Research Development Program of China (No.2006CB202605)the National Natural Science Foundation of China (No.50473055)
文摘The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.
基金supported by the National Natural Science Foundation of China(Grand No.21773128)Key Research and Development Projects of Sichuan Province(Grand No.2017GZ0052)+1 种基金National Postdoctoral Program for Innovative Talents(BX201600138)Anshan Hifichem Co.,Ltd
文摘Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminescence (TRPL) spectra revealed that the TiO2 NSs are more effective than TiO2 nanoparticles in accepting electrons from perovskite. Moreover. the TiO2 nanospindles further endowed the PSCs with good reproducibility and suppressed hysteresis. The best device with TiO2 NSs as ETMs yielded power conversion efficiency (PCE) of 19.6%, demonstrating that the home-made TiO2 NSs is a good ETM for PSCs.
文摘Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.