Crystalline silicon(c-Si)solar cells,though dominating the photovoltaic market,are nearing their theoretical power conversion efficiencies(PCE)limit of 29.4%,necessitating the adoption of multi-junction technology to ...Crystalline silicon(c-Si)solar cells,though dominating the photovoltaic market,are nearing their theoretical power conversion efficiencies(PCE)limit of 29.4%,necessitating the adoption of multi-junction technology to achieve higher performance.Among these,perovskiteon-silicon-based multi-junction solar cells have emerged as a promising alternative,where the perovskite offering tunable bandgaps,superior optoelectronic properties,and cost-effective manufacturing.Recent announced double-junction solar cells(PSDJSCs)have achieved the PCE of 34.85%,surpassing all other double-junction technologies.Encouragingly,the rapid advancements in PSDJSCs have spurred increased research interest in perovskite/perovskite/silicon triple-junction solar cells(PSTJSCs)in 2024.This triple-junction solar cell configuration demonstrates immense potential due to their optimum balance between achieving a high PCE limit and managing device complexity.This review provides a comprehensive analysis of PSTJSCs,covering fundamental principles,and technological milestones.Current challenges,including current mismatch,open-circuit voltage deficits,phase segregation,and stability issues,and their corresponding strategies are also discussed,alongside future directions to achieve long-term stability and high PCE.This work aims to advance the understanding of the development in PSTJSCs,paving the way for their practical implementation.展开更多
Perovskite solar cells have achieved remarkable progress in photovoltaic efficiency.However,interfacial defects at the buried and upper interfaces of perovskite layer remain a critical challenge,leading to charge reco...Perovskite solar cells have achieved remarkable progress in photovoltaic efficiency.However,interfacial defects at the buried and upper interfaces of perovskite layer remain a critical challenge,leading to charge recombination,ion migration,and iodine oxidation.To address this,we propose a novel all-in-one modification strategy employing ammonia borane(BNH6)as a multifunctional complex.By incorporating BNH6 at both buried and upper interfaces simultaneously,we achieve dualinterfacial defect passivation and iodide oxidation suppression through three key mechanisms:(1)hydrolysis-induced interaction with SnO_(2),(2)coordination with Pb^(2+),and(3)inhibition of I−oxidation.This approach significantly enhances device performance,yielding a champion power conversion efficiency(PCE)of 26.43%(certified 25.98%).Furthermore,the unencapsulated device demonstrates prominent enhanced operation stability,maintaining 90%of its initial PCE after 500 h under continuous illumination.Notably,our strategy eliminates the need for separate interface treatments,streamlining fabrication and offering a scalable route toward high-performance perovskite photovoltaics.展开更多
This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,5...This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.展开更多
The Triple Ionosphere Photometer(TRIPM)is a scientific payload aboard the Fengyun-3E(FY-3E)satellite,which operates in a dawn−dusk orbit.It is primarily designed for nadir observations of airglow emissions at OI 135.6...The Triple Ionosphere Photometer(TRIPM)is a scientific payload aboard the Fengyun-3E(FY-3E)satellite,which operates in a dawn−dusk orbit.It is primarily designed for nadir observations of airglow emissions at OI 135.6 nm and N_(2)Lyman-Birge-Hopfield(LBH)bands.Due to the satellite’s dawn−dusk orbital characteristics,most of TRIPM’s field of view remains in a semi-illuminated condition.Therefore,compared with airglow data of the same bands acquired under purely daytime or nighttime conditions,applying TRIPM data poses greater challenges.This study presents the first attempt to use TRIPM data for retrieving solar extreme ultraviolet(EUV)flux.Our results demonstrate that by utilizing TRIPM data in regions where photoelectron excitation dominates as the primary radiation source,the solar EUV flux(denoted as Q_(EUV))can be retrieved.Comparisons with data from the SOHO/SEM instrument reveal excellent consistency,with a seasonal correlation coefficient(R)of at least 0.95.This work thus offers a new avenue for solar EUV flux acquisition and expands the application range of TRIPM data.展开更多
Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bot...Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.展开更多
A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamin...A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamino side groups,TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network.These structural attributes markedly promote exciton diffusion and charge carrier mobility,particularly advantageous for the fabrication of thick-film devices.TT-Ph-C6-based devices have attained a PCE of 18.01%at a film thickness of 100 nm,and even at a film thickness of 300 nm,the PCE remains at 14.64%,surpassing that of devices based on 2BTh-2F.These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs.展开更多
Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light condi...Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.展开更多
Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions...Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions.Zwitterionic polymers offer promising nonfouling capabilities,but current zwitterionic hydrogel-based solar evaporators(HSEs)suffer from inadequate hydration and salt vulnerability.Inspired by the natural marine environmental adaptive characteristics of saltwater fish,we report a superhydrated zwitterionic poly(trimethylamine N-oxide,PTMAO)/polyacrylamide(PAAm)/polypyrrole(PPy)hydrogel(PTAP)with dedicated water channels for efficient,durable,and nonfouling SID.The directly linked N⁺and O⁻groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion.PTAP achieves a high evaporation rate of 2.35 kg m^(−2)h^(−1)under 1 kW m^(–2)in 10 wt%NaCl solution,maintaining stable operation over 100 h without salt accumulation.Furthermore,PTAP effectively resists various foulants including proteins,bacterial,and algal adhesion.Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties.This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments.展开更多
The introduction of two-dimensional(2D)perovskite layers on top of three-dimensional(3D)perovskite films enhances the performance and stability of perovskite solar cells(PSCs).However,the electronic effect of the spac...The introduction of two-dimensional(2D)perovskite layers on top of three-dimensional(3D)perovskite films enhances the performance and stability of perovskite solar cells(PSCs).However,the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results.In this study,we compared two fluorinated salts:4-(trifluoromethyl)benzamidine hydrochloride(4TF-BA·HCl)and 4-fluorobenzamidine hydrochloride(4F-BA·HCl)to engineer the 3D/2D perovskite films.Surprisingly,4F-BA formed a high-performance 3D/2D heterojunction,while4TF-BA produced an amorphous layer on the perovskite films.Our findings indicate that the balanced intramolecular charge polarization,which leads to effective hydrogen bonding,is more favorable in 4F-BA than in 4TF-BA,promoting the formation of a crystalline 2D perovskite.Nevertheless,4TF-BA managed to improve efficiency to 24%,surpassing the control device,primarily due to the natural passivation capabilities of benzamidine.Interestingly,the devices based on 4F-BA demonstrated an efficiency exceeding 25%with greater longevity under various storage conditions compared to 4TF-BA-based and the control devices.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Integrated perovskite-organic solar cells(IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with...Integrated perovskite-organic solar cells(IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with a simplified architecture. However, challenges such as limited charge mobility in organic bulk heterojunction(BHJ) layers, and energy-level mismatch at the perovskite/BHJ interface still sustain. Recent advancements in non-fullerene acceptors(NFAs), interfacial engineering, and emerging materials have improved charge transfer/transport, and overall power conversion efficiency(PCE) of IPOSCs.This review explores key developments in IPOSCs, focusing on low-bandgap materials for near-infrared absorption, energy alignment optimization, and strategies to enhance photocurrent density and device performance. Future innovations in material selection and device architecture will be crucial for further improving the efficiency of IPOSCs, bringing them closer to practical application in next-generation photovoltaic technologies.展开更多
Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell ...Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell industry has experienced unprecedented development. The full utilization of solar energy resources remains an urgent issue to be addressed.展开更多
Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learnin...Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learning models and long-term observational records of sunspot relative numbers are essential for solar cycle forecasting.Using the multivariate time series of monthly sunspot relative numbers provided by the National Astronomical Observatory of Japan and two Informer-based models,we forecast the amplitude and timing of solar cycles 25 and 26.The main results are as follows:(1)The maximum amplitude of solar cycle 25 is higher than the previous solar cycle 24 and the following solar cycle 26,suggesting that the long-term oscillatory variation of sunspot magnetic fields is related to the roughly centennial Gleissberg cyclicity.(2)Solar cycles 25 and 26 exhibit a pronounced Gnevyshev gap,which might be caused by two non-coincident peaks resulting from solar magnetic flux transported by meridional circulation and mid-latitude diffusion in the convection zone.(3)Hemispheric prediction of sunspot activity reveals a significant northsouth asynchrony,with activity level of the Sun being more intense in the southern hemisphere.These results are consistent with expectations derived from precursor methods and dynamo theories,and further provide evidence for internal changes in solar magnetic field during the decay of the Modern Maximum.展开更多
Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIG...Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.展开更多
This study investigates the relationship between pesticide metabolites and kidney function in solar greenhouse workers,a group with potentially higher chronic kidney disease(CKD)risk compared to general farmers.A tota...This study investigates the relationship between pesticide metabolites and kidney function in solar greenhouse workers,a group with potentially higher chronic kidney disease(CKD)risk compared to general farmers.A total of 279 workers participated,with pesticide metabolites(AMPA,DMP,DEP,DMDTP,GLY,and DEDTP)measured in their urine.展开更多
In the quest for effective solutions to address Environ.Pollut.and meet the escalating energy demands,heterojunction photocatalysts have emerged as a captivating and versatile technology.These photocatalysts have garn...In the quest for effective solutions to address Environ.Pollut.and meet the escalating energy demands,heterojunction photocatalysts have emerged as a captivating and versatile technology.These photocatalysts have garnered significant interest due to their wideranging applications,including wastewater treatment,air purification,CO_(2) capture,and hydrogen generation via water splitting.This technique harnesses the power of semiconductors,which are activated under light illumination,providing the necessary energy for catalytic reactions.With visible light constituting a substantial portion(46%)of the solar spectrum,the development of visible-light-driven semiconductors has become imperative.Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light.In this comprehensive review,we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media,as well as the remarkable progress made in renewable energy production.Moreover,we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems.Finally,we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain.By unraveling the potential of heterojunction photocatalysts,this reviewcontributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.展开更多
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ...Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.展开更多
All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) ...All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) perovskite solar cells(PSCs), which are crucial components of ATSCs, are much lower than those of lead-based perovskites. The primary challenges include the high crystallization rate of perovskite materials and the susceptibility of Sn^(2+) oxidation, which leads to rough morphology and unfavorable p-type self-doping. To address these issues, we introduced ethylhydrazine oxalate(EDO) at the perovskite interface, which effectively inhibits the oxidation of Sn^(2+) and simultaneously enhances the crystallinity of the perovskite. Consequently, the EDO-modified mixed tin-lead PSCs reached a power conversion efficiency(PCE) of 21.96% with high reproducibility. We further achieved a 27.58% efficient ATSCs by using EDO as interfacial passivator in the Sn-Pb PSCs.展开更多
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al...Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.展开更多
基金supported by the National Natural Science Foundation of China under Grants 62404185the industry-academia joint laboratory collaboration between Hiking PV and Xiamen University(20243160C0010)J.Z.is supported by Nanqiang Outstanding Young Talents Program X2450215 of Xiamen University.
文摘Crystalline silicon(c-Si)solar cells,though dominating the photovoltaic market,are nearing their theoretical power conversion efficiencies(PCE)limit of 29.4%,necessitating the adoption of multi-junction technology to achieve higher performance.Among these,perovskiteon-silicon-based multi-junction solar cells have emerged as a promising alternative,where the perovskite offering tunable bandgaps,superior optoelectronic properties,and cost-effective manufacturing.Recent announced double-junction solar cells(PSDJSCs)have achieved the PCE of 34.85%,surpassing all other double-junction technologies.Encouragingly,the rapid advancements in PSDJSCs have spurred increased research interest in perovskite/perovskite/silicon triple-junction solar cells(PSTJSCs)in 2024.This triple-junction solar cell configuration demonstrates immense potential due to their optimum balance between achieving a high PCE limit and managing device complexity.This review provides a comprehensive analysis of PSTJSCs,covering fundamental principles,and technological milestones.Current challenges,including current mismatch,open-circuit voltage deficits,phase segregation,and stability issues,and their corresponding strategies are also discussed,alongside future directions to achieve long-term stability and high PCE.This work aims to advance the understanding of the development in PSTJSCs,paving the way for their practical implementation.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.22334007).
文摘Perovskite solar cells have achieved remarkable progress in photovoltaic efficiency.However,interfacial defects at the buried and upper interfaces of perovskite layer remain a critical challenge,leading to charge recombination,ion migration,and iodine oxidation.To address this,we propose a novel all-in-one modification strategy employing ammonia borane(BNH6)as a multifunctional complex.By incorporating BNH6 at both buried and upper interfaces simultaneously,we achieve dualinterfacial defect passivation and iodide oxidation suppression through three key mechanisms:(1)hydrolysis-induced interaction with SnO_(2),(2)coordination with Pb^(2+),and(3)inhibition of I−oxidation.This approach significantly enhances device performance,yielding a champion power conversion efficiency(PCE)of 26.43%(certified 25.98%).Furthermore,the unencapsulated device demonstrates prominent enhanced operation stability,maintaining 90%of its initial PCE after 500 h under continuous illumination.Notably,our strategy eliminates the need for separate interface treatments,streamlining fabrication and offering a scalable route toward high-performance perovskite photovoltaics.
文摘This study explores the thin-layer convective solar drying of Marrubium vulgare L.leaves under conditions typical of sun-rich semi-arid climates.Drying experiments were conducted at three inlet-air temperatures(40℃,50℃,60℃)and two air velocities(1.5 and 2.5 m·s^(-1))using an indirect solar dryer with auxiliary temperature control.Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient(r),root-mean-square error(RMSE),and Akaike information criterion(AIC).A complementary heattransfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance,and an energy balance quantified the relative contributions of solar and auxiliary heat.The logarithmic model consistently achieved the lowest RMSE/AIC with r>0.99 across all conditions.Higher temperature and air velocity significantly reduced drying time during the decreasing-rate period,with no constantrate stage observed.On average,solar input supplied the large majority of the thermal demand,while the auxiliary heater compensated short irradiance drops to maintain setpoints.These findings provide a reproducible dataset and a modelling benchmark for M.vulgare leaves,and they support energy-aware design of hybrid solar dryers formedicinal plants in sun-rich regions.
基金supported financially by National Natural Science Foundation of China(Grant No.42174226,42474239)National Key Research and Development Program(2022YFF0503901)China Meteorological Administration‘Ionospheric Forecast and Alerting’Youth Innovation Team(CMA2024QN09).
文摘The Triple Ionosphere Photometer(TRIPM)is a scientific payload aboard the Fengyun-3E(FY-3E)satellite,which operates in a dawn−dusk orbit.It is primarily designed for nadir observations of airglow emissions at OI 135.6 nm and N_(2)Lyman-Birge-Hopfield(LBH)bands.Due to the satellite’s dawn−dusk orbital characteristics,most of TRIPM’s field of view remains in a semi-illuminated condition.Therefore,compared with airglow data of the same bands acquired under purely daytime or nighttime conditions,applying TRIPM data poses greater challenges.This study presents the first attempt to use TRIPM data for retrieving solar extreme ultraviolet(EUV)flux.Our results demonstrate that by utilizing TRIPM data in regions where photoelectron excitation dominates as the primary radiation source,the solar EUV flux(denoted as Q_(EUV))can be retrieved.Comparisons with data from the SOHO/SEM instrument reveal excellent consistency,with a seasonal correlation coefficient(R)of at least 0.95.This work thus offers a new avenue for solar EUV flux acquisition and expands the application range of TRIPM data.
基金the National Natural Science Foundation of China(Nos.62374029,22175029,62474033,and W2433038)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220550)+2 种基金the Sichuan Science and Technology Program(No.2024NSFSC0250)the Natural Science Foundation of Shenzhen Innovation Committee(JCYJ20210324135614040)the Fundamental Research Funds for the Central Universities of China(No.ZYGX2022J032).
文摘Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.
基金Financial support from the National Natural Science Foundation of China(22375024,21975031,21734009,51933001,22109080,and 52173174)the Natural Science Foundation of Shandong Province(No.ZR2022YQ45)+2 种基金the Taishan Scholars Program(Nos.tstp20221121 and tsqnz20221134)The Beijing Natural Science Foundation(No.2244073)supported by State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(RZ2200002821)is acknowledged.
文摘A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamino side groups,TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network.These structural attributes markedly promote exciton diffusion and charge carrier mobility,particularly advantageous for the fabrication of thick-film devices.TT-Ph-C6-based devices have attained a PCE of 18.01%at a film thickness of 100 nm,and even at a film thickness of 300 nm,the PCE remains at 14.64%,surpassing that of devices based on 2BTh-2F.These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs.
基金supported by the European Research Council(ERC)under the European Union's Horizon 2020 Research and Innovation Programme(Grant Agreement No.818762)the Engineering and Physical Sciences Research Council(Grant No.EP/V048953/1)and the Isaac Newton Trust(grant 22.39(m))。
文摘Although multicrystalline Si photovoltaics have been extensively studied and applied in the collection of solar energy,the same systems suffer significant efficiency losses in indoor settings,where ambient light conditions are considerably smaller in intensity and possess greater components of non-normal incidence.Yet,indoor light-driven,stand-alone devices can offer sustainable advances in next-generation technologies such as the Internet of Things.Here,we present a non-invasive solution to aid in photovoltaic indoor light collection—radially distributed waveguide-encoded lattice(RDWEL)slim films(thickness 1.5 mm).Embedded with a monotonical radial array of cylindrical waveguides(±20°),the RDWEL demonstrates seamless light collection(FoV(fields of view)=74.5°)and imparts enhancements in JSC(short circuit current density)of 44%and 14%for indoor and outdoor lighting conditions,respectively,when coupled to a photovoltaic device and compared to an unstructured but otherwise identical slim film coating.
基金supported by National Natural Science Foundation of China(22209036,U23A20119)Hebei Provincial Natural Science Foundation,Excellent Youth Project(E2023202069)+1 种基金National Key R&D Program of China(2024YFF0506000,2024YFB4609100)Fundamental Research Foundation from Hebei University of Technology(424132016,282021485).
文摘Solar-driven interfacial desalination(SID)offers a sustainable route for freshwater production,yet its long-term performance is compromised by salt crystallization and microbial fouling under complex marine conditions.Zwitterionic polymers offer promising nonfouling capabilities,but current zwitterionic hydrogel-based solar evaporators(HSEs)suffer from inadequate hydration and salt vulnerability.Inspired by the natural marine environmental adaptive characteristics of saltwater fish,we report a superhydrated zwitterionic poly(trimethylamine N-oxide,PTMAO)/polyacrylamide(PAAm)/polypyrrole(PPy)hydrogel(PTAP)with dedicated water channels for efficient,durable,and nonfouling SID.The directly linked N⁺and O⁻groups in PTMAO establish a robust hydration shell that facilitates rapid water transport while resisting salt and microbial adhesion.Integrated PAAm and PPy networks enhance mechanical strength and photothermal conversion.PTAP achieves a high evaporation rate of 2.35 kg m^(−2)h^(−1)under 1 kW m^(–2)in 10 wt%NaCl solution,maintaining stable operation over 100 h without salt accumulation.Furthermore,PTAP effectively resists various foulants including proteins,bacterial,and algal adhesion.Molecular dynamics simulations reveal that the exceptional hydration capacity supports its nonfouling properties.This work advances the development of nonfouling HSEs for sustainable solar desalination in real-world marine environments.
基金supported by the National Key Research and Development Programs-Intergovernmental International Cooperation in Science and Technology Innovation Project(Grant No.2022YFE0118400)the Natural Science Foundation of Hunan Province(2023JJ50132)+1 种基金Shenzhen Science and Technology Innovation Committee(Grants Nos.JCYJ20220818100211025,and KCXST20221021111616039)Shenzhen Science and Technology Program(No.20231128110928003)。
文摘The introduction of two-dimensional(2D)perovskite layers on top of three-dimensional(3D)perovskite films enhances the performance and stability of perovskite solar cells(PSCs).However,the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results.In this study,we compared two fluorinated salts:4-(trifluoromethyl)benzamidine hydrochloride(4TF-BA·HCl)and 4-fluorobenzamidine hydrochloride(4F-BA·HCl)to engineer the 3D/2D perovskite films.Surprisingly,4F-BA formed a high-performance 3D/2D heterojunction,while4TF-BA produced an amorphous layer on the perovskite films.Our findings indicate that the balanced intramolecular charge polarization,which leads to effective hydrogen bonding,is more favorable in 4F-BA than in 4TF-BA,promoting the formation of a crystalline 2D perovskite.Nevertheless,4TF-BA managed to improve efficiency to 24%,surpassing the control device,primarily due to the natural passivation capabilities of benzamidine.Interestingly,the devices based on 4F-BA demonstrated an efficiency exceeding 25%with greater longevity under various storage conditions compared to 4TF-BA-based and the control devices.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by National Natural Science Foundation of China (NSFC) (No. U2001216)Shenzhen Science and Technology Innovation Committee (No. 20231121102401001)the Shenzhen Key Laboratory Project (No. ZDSYS201602261933302)。
文摘Integrated perovskite-organic solar cells(IPOSCs) offer a promising hybrid approach that combines the advantages of perovskite and organic solar cells, enabling efficient photon absorption across a broad spectrum with a simplified architecture. However, challenges such as limited charge mobility in organic bulk heterojunction(BHJ) layers, and energy-level mismatch at the perovskite/BHJ interface still sustain. Recent advancements in non-fullerene acceptors(NFAs), interfacial engineering, and emerging materials have improved charge transfer/transport, and overall power conversion efficiency(PCE) of IPOSCs.This review explores key developments in IPOSCs, focusing on low-bandgap materials for near-infrared absorption, energy alignment optimization, and strategies to enhance photocurrent density and device performance. Future innovations in material selection and device architecture will be crucial for further improving the efficiency of IPOSCs, bringing them closer to practical application in next-generation photovoltaic technologies.
文摘Solar energy, as a renewable resource, is an effective solution to the current global energy shortage problem. To actively respond to the call for "carbon peak" and "carbon neutrality", solar cell industry has experienced unprecedented development. The full utilization of solar energy resources remains an urgent issue to be addressed.
基金supported by the National Nature Science Foundation of China(12463009)the Yunnan Fundamental Research Projects(202301AV070007,202401AU070026)+2 种基金the"Yunnan Revitalization Talent Support Program"Innovation Team Project(202405AS350012)the Scientific Research Foundation Project of Yunnan Education Department(2023J0624,2024Y469)the GHfund A(202407016295)。
文摘Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learning models and long-term observational records of sunspot relative numbers are essential for solar cycle forecasting.Using the multivariate time series of monthly sunspot relative numbers provided by the National Astronomical Observatory of Japan and two Informer-based models,we forecast the amplitude and timing of solar cycles 25 and 26.The main results are as follows:(1)The maximum amplitude of solar cycle 25 is higher than the previous solar cycle 24 and the following solar cycle 26,suggesting that the long-term oscillatory variation of sunspot magnetic fields is related to the roughly centennial Gleissberg cyclicity.(2)Solar cycles 25 and 26 exhibit a pronounced Gnevyshev gap,which might be caused by two non-coincident peaks resulting from solar magnetic flux transported by meridional circulation and mid-latitude diffusion in the convection zone.(3)Hemispheric prediction of sunspot activity reveals a significant northsouth asynchrony,with activity level of the Sun being more intense in the southern hemisphere.These results are consistent with expectations derived from precursor methods and dynamo theories,and further provide evidence for internal changes in solar magnetic field during the decay of the Modern Maximum.
基金supported by the Science and Technology Innovation Development Program(No.70304901).
文摘Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is considered to be the most potential light-absorbing material to replace CuInGaSe_(2)(CIGS),but the actual photoelectric conversion efficiency of such cells is much lower than that of CIGS.One of the reasons is the high recombination rate of carriers at the interface.In this paper,in order to reduce the carrier recombination,a new solar cell structure with double absorber layers of Al-doped ZnO(AZO)/intrinsic(i)-ZnO/CdS/CZTS_(x1)Se_(1−x1)(CZTSSe_(1))/CZTS_(x2)Se_(1−x2)(CZTSSe_(2))/Mo was proposed,and the optimal conduction band offsets(CBOs)of CdS/CZTSSe_(1) interface and CZTSSe_(1)/CZTSSe_(2) interface were determined by changing the S ratio in CZTSSe_(1) and CZTSSe_(2),and the effect of thickness of CZTSSe_(1) on the performance of the cell was studied.The efficiencies of the optimized single and double absorber layers reached 17.97%and 23.4%,respectively.Compared with the single absorber layer structure,the proposed structure with double absorber layers has better cell performance.
基金supported by the Beijing Natural Science Foundation,China(7234402)the Natural Science Foundation of Gansu Province(20JR10RA421).
文摘This study investigates the relationship between pesticide metabolites and kidney function in solar greenhouse workers,a group with potentially higher chronic kidney disease(CKD)risk compared to general farmers.A total of 279 workers participated,with pesticide metabolites(AMPA,DMP,DEP,DMDTP,GLY,and DEDTP)measured in their urine.
基金supported by the National Natural Science Foundation of China (Nos.52072152 and 51802126)Jiangsu University Jinshan Professor Fund,Jiangsu Specially-Appointed Professor Fund,the Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials,Zhenjiang“Jinshan Talents”Project 2021,China PostDoctoral Science Foundation (No.2022M721372)+1 种基金the“Doctor of Entrepreneurship and Innovation”in Jiangsu Province (No.JSSCBS20221197)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_3645).
文摘In the quest for effective solutions to address Environ.Pollut.and meet the escalating energy demands,heterojunction photocatalysts have emerged as a captivating and versatile technology.These photocatalysts have garnered significant interest due to their wideranging applications,including wastewater treatment,air purification,CO_(2) capture,and hydrogen generation via water splitting.This technique harnesses the power of semiconductors,which are activated under light illumination,providing the necessary energy for catalytic reactions.With visible light constituting a substantial portion(46%)of the solar spectrum,the development of visible-light-driven semiconductors has become imperative.Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light.In this comprehensive review,we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media,as well as the remarkable progress made in renewable energy production.Moreover,we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems.Finally,we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain.By unraveling the potential of heterojunction photocatalysts,this reviewcontributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.
基金Project supported by the Scientific Research Project of China Three Gorges Corporation(Grant No.202203092)。
文摘Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.
基金financially supported by National Key R&D Program of China (2025YFE0100300)the National Natural Science Foundation of China (52202293 and 52330004)the Fundamental Research Funds for the Central Universities (WUT: 2023IVA075 and 2023IVB009)。
文摘All-perovskite tandem solar cells(ATSCs) have the potential to surpass the Shockley-Queisser efficiency limit of conventional single-junction devices. However, the performance and stability of mixed tin–lead(Sn–Pb) perovskite solar cells(PSCs), which are crucial components of ATSCs, are much lower than those of lead-based perovskites. The primary challenges include the high crystallization rate of perovskite materials and the susceptibility of Sn^(2+) oxidation, which leads to rough morphology and unfavorable p-type self-doping. To address these issues, we introduced ethylhydrazine oxalate(EDO) at the perovskite interface, which effectively inhibits the oxidation of Sn^(2+) and simultaneously enhances the crystallinity of the perovskite. Consequently, the EDO-modified mixed tin-lead PSCs reached a power conversion efficiency(PCE) of 21.96% with high reproducibility. We further achieved a 27.58% efficient ATSCs by using EDO as interfacial passivator in the Sn-Pb PSCs.
基金supported by the National Natural Science Foundation of China (42388101)the CAS Youth Interdisciplinary Team (JCTD-2021-05)funded by the Youth Innovation Promotion Association, Chinese Academy of Sciences.
文摘Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.