Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived ...Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived from moringa leaves and cocoa pod husks that can improve soil quality and plant growth. The experimental design consisted of completely randomized blocks in three repetitions. The experiment was carried out in five treatments: T0: no fertilization, T1: 100% cocoa pods, T2: 75% cocoa pods + 25% Moringa leaves;T3: 50% cocoa pods + 50% Moringa leaves;T4: 25% cocoa pods + 75% Moringa leaves;T5: 100% Moringa leaves. Three doses were applied: 1;2;4 kg/m2. The trial took place over three growing cycles. The results of the soil analysis compared to the control revealed a significant improvement in physicochemical parameters. Variation of pH from (6.1 to 7.2), calcium from (1.4 to 4.13), magnesium from (0.450 to 0.870), potassium from (0.096 to 0.365) cmol+/kg. Carbon and nitrogen were recorded (1.02% to 2.77%) and (0.12% to 2.56%) respectively. The CEC (cation exchange capacity) saw a clear improvement (4.2 to 9.03) cmol+/kg. Concerning the growth parameters, the control plants recorded an average height of (31.19 cm) while those that benefited from the treatments oscillated between (55.51 to 105.57 cm). In terms of production, the best yields are attributed to treatments T3 and T4 with (37.66 t/ha) and (51.176 t/ha) respectively. The T3 and T4 formulations could help improve the fertility of agricultural soils and the yield of market garden products such as eggplant.展开更多
The purpose of this study was to characterize the chemical components of the extract of Solanum Nigrum Linn.(SNL),by LC-MS/MS,and to identify 33 compounds by positive and negative total ion flow maps.Network pharmacol...The purpose of this study was to characterize the chemical components of the extract of Solanum Nigrum Linn.(SNL),by LC-MS/MS,and to identify 33 compounds by positive and negative total ion flow maps.Network pharmacology and molecular docking methods were used to investigate the mechanism of action of SNL against ulcerative colitis(UC).A total of 282 component target genes and 1850 disease target genes were obtained,and 157 cross-targets and 16 core-targets were obtained after crossover.A total of 20 signaling pathways such as anti-inflammatory and anti-apoptotic were obtained by GO analysis and KEGG analysis,respectively.It is possible that the anti UC eff ect can be achieved by regulating proteins such as AKT1,EGFR,NFKB1,JUN,and HSP90AA1.Molecular docking results show that the anti UC active ingredients are well docked with the target protein molecules This study provides a scientific basis for the development and utilization of SNL.展开更多
As access to irrigation water becomes increasingly limited, introgression of relevant genomic regions from drought-tolerant wild genotypes is a promising breeding strategy for crop plants. In this study, nine eggplant...As access to irrigation water becomes increasingly limited, introgression of relevant genomic regions from drought-tolerant wild genotypes is a promising breeding strategy for crop plants. In this study, nine eggplant(Solanum melongena) introgression lines(ILs) covering altogether 71.6% of the genome of the donor wildrelative parent S. incanum were evaluated for drought tolerance under water stress conditions. Plants at the five true leaves stage were irrigated at either 100%(control) or 30%(water stress) field capacity for 14 days, and growth and biochemical traits were measured. Reduced irrigation resulted in decreased growth and increased stress markers such as proline and malondialdehyde. Most ILs had lower growth and biomass production thanthe cultivated parent under both conditions. However, the wild alleles for two genomic regions related to stem and root dry weight conferred improved tolerance to water stress. In addition, several S. incanum alleles had a positive effect on important traits that may improve yield under drought conditions, such as leaf water content water use efficiency, and chlorophyll content. Fine-mapping the genomic regions for tolerance and reducinglinkage drag with regions affecting growth will be crucial for significantly improving eggplant drought tolerance through introgression breeding.展开更多
Tomato is one of the most essential vegetable crops worldwide,with the highest annual production rate of all agricultural staples(Kimura and Sinha,2008).Long-term domestication of tomatoes has led to the selection of ...Tomato is one of the most essential vegetable crops worldwide,with the highest annual production rate of all agricultural staples(Kimura and Sinha,2008).Long-term domestication of tomatoes has led to the selection of favorable agronomic traits that often come at the expense of stress resistance.To identify potential genetic targets for improved stress tolerance,whole-genome sequencing(WGS)has been applied to wild and cultivated accessions.展开更多
[Objectives] This study was conducted to investigate the scientific prevention and control of Solanum nigrum L. [Methods] Through experiments on S. nigrum from different sources, it was found that glyphosate stress ha...[Objectives] This study was conducted to investigate the scientific prevention and control of Solanum nigrum L. [Methods] Through experiments on S. nigrum from different sources, it was found that glyphosate stress had significant effects on antioxidant enzyme activity and oxidative damage of sensitive S. nigrum plants. [Results] Sensitive S. nigrum showed oxidative damage under glyphosate stress, while resistant S. nigrum responded to adversity damage by improving its antioxidant enzyme activity. The experimental results showed that the antioxidant enzymes and reduced glutathione of S. nigrum had certain metabolic detoxification effects under glyphosate stress. [Conclusions] This study provides a theoretical basis for scientific prevention and control of S. nigrum , and has a certain reference value for revealing the glyphosate resistance mechanism of S. nigrum .展开更多
Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to inve...Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to investigate the genetic diversity of selected Iranian tomato cultivars(Solanum lycopersicum)using RAPD and ISSR molecular markers.Method:Ten RAPD primers and ten ISSR primers were employed to assess the genetic diversity among 10 tomato cultivars:Matin,RFT 112,Hirad,Golsar,Raha,Hengam,Hedah,Fasa,JS12,and Emerald.Data analysis involved the UPGMA algorithm and NTYSYSpc software.Results:RAPD analysis revealed close genetic proximity between Fasa and JS12,as well as between Raha and Hadieh.Conversely,the RFT 112,Hengam,Hirad,and Emerald cultivars exhibited significant genetic diversity within this group.ISSR primer analysis identified Hengam as the most diverse variety,while Matin,Emerald,and Vibrid,as well as Raha and JS12,displayed genetic similarities with minimal observed diversity.Furthermore,the overall analysis of the cultivars using RAPD and ISSR markers indicated that Hengam exhibited the highest diversity among all the varieties.Notably,Raha and JS12 demonstrated limited diversity in this analysis.Conclusion:This research demonstrates substantial genetic diversity among the investigated tomato varieties,with Hengam displaying the highest diversity within this group.Furthermore,ISSR markers proved more effective in determining genetic diversity in tomato plants.展开更多
Evidence of the advantages of Solanum nigrum L.for the treatment of ulcerative colitis is accumulating.However,research revealing the treatment of Solanum diphyllum L.against ulcerative colitis is scarce.In this study...Evidence of the advantages of Solanum nigrum L.for the treatment of ulcerative colitis is accumulating.However,research revealing the treatment of Solanum diphyllum L.against ulcerative colitis is scarce.In this study,the chemical components of the extract of Solanum diphyllum L.were characterized by LC-MS/MS,identifying 31 compounds by positive and negative total ion flow maps.A total of 425 component target genes and 1900 disease target genes were obtained,and 121 intersection targets and 6 core targets were obtained after the intersection of the two genes by means of network pharmacology.GO analysis and KEGG analysis respectively obtained 20 signaling pathways such as anti-infl ammation.The results of molecular docking showed that the chemical components could successfully dock with the target proteins of the disease such as SRC,EGFR,PTGS2,MMP9,HSP90AA1,ESR1.This study provided a scientifi c basis for the development and application of Solanum diphyllum L.展开更多
In 2020,breast cancer emerged as the leading type of cancer worldwide,surpassing lung cancer in the number of new cases.The high cost and frequent failure of current treatments due to drug resistance and other challen...In 2020,breast cancer emerged as the leading type of cancer worldwide,surpassing lung cancer in the number of new cases.The high cost and frequent failure of current treatments due to drug resistance and other challenges underscore the urgent need for novel,affordable,efficient,and less toxic breast cancer therapies with fewer side effects.This study aims to investigate the molecular mechanisms by which Solanum Nigrum L.counters breast cancer,employing network pharmacology and molecular docking methods.Methods:The study identified the primary active compounds of Solanum Nigrum L.using databases such as TCMSP,TCM-ID,NPASS,and BATMAN.Prediction of the compounds'targets was facilitated by the SwissADME website,while main breast cancer targets were sourced from the GeneCards,OMIM,and TTD databases.The identified drug-disease intersection targets were analyzed using the STRING platform to construct a protein interaction network,which was then visualized and refined to select hub targets using Cytoscape 3.9.0 software.The Metascape database's MOCDE functional plugin was employed for identifying potential functional modules within the protein interaction network.Further,the DAVID database was utilized for GO and KEGG enrichment analyses of the intersection targets.Molecular docking of key active compounds with core targets was performed using AutoDock Tools 1.5.7 software.Lastly,the GEPIA2.0 database was used for predicting overall survival curves of hub targets and conducting a pan-cancer analysis.Results:Eleven active compounds of Solanum Nigrum L.,including Diosgenin,Tigogenin,and Quercetin,were identified from traditional Chinese medicine databases.We discovered 113 targets common to both Solanum Nigrum L.and breast cancer.Solanum Nigrum L.exhibits anti-breast cancer properties through interactions with 14 key targets,including SRC,PIK3R1,HSP90AA1,PIK3CA,AKT1,VEGFA,and ESR1.These interactions influence several critical signaling pathways,notably the cancer signaling pathway,PI3K-Akt signaling pathway,Ras signaling pathway,and EGFR signaling pathway.Survival analysis indicated that the aberrant expression of these 14 key targets significantly affects patient survival times.Furthermore,pan-cancer analysis highlighted marked differences in the expression patterns of these targets between breast cancer patients and control groups.Conclusion:Solanum Nigrum L.mediates its therapeutic impact on breast cancer through a comprehensive approach,targeting multiple components,targets,and pathways.展开更多
Alcoholic liver injury is a liver disease caused by excessive alcohol consumption,which can lead to chronic liver disease death.Solanum Nigrum Linn taste bitter,cold,has the effect of clearing heat and detoxification,...Alcoholic liver injury is a liver disease caused by excessive alcohol consumption,which can lead to chronic liver disease death.Solanum Nigrum Linn taste bitter,cold,has the effect of clearing heat and detoxification,promoting blood and detumescence.Solanum Nigrum Linn fruit contains a variety of antioxidant enzymes,can remove the body produced by aerobic metabolism harmful substances.In this paper,a model of alcohol-induced liver injury in C57BL/6 mice was established to evaluate the protective effect of Solanum Nigrum Linn green fruit(SNGF)ethanolic extract on alcohol-induced liver injury.H&E staining and oil red O(ORO)staining showed that hepatic lobules were clearly demarcated,vacuoles were significantly reduced and lipid droplets were reduced in SNGF ethanolic extract treatment group.Serum levels of TC,TG,LDH,TBA,AKP,ALT and AST were decreased in the SNGF ethanolic extract treatment group,and SNGF ethanolic extract could clear reactive oxygen species(ROS)in time.MDA content was signifi cantly decreased after SNGF ethanolic extract treatment,while superoxide dismutase(SOD)and GSH-Px contents were increased after SNGF ethanolic extract treatment.These results suggest that SNGF ethanolic extract has a protective effect on alcohol-induced liver injury.展开更多
The Rio Grande variety of tomato is widely grown because of its high productivity during the cold and dry seasons, and its resistance to Verticillium wilt (caused by Fusarium oxysporium) and to stem canker (Alternaria...The Rio Grande variety of tomato is widely grown because of its high productivity during the cold and dry seasons, and its resistance to Verticillium wilt (caused by Fusarium oxysporium) and to stem canker (Alternaria). Grafting tomato onto compatible rootstocks resistant to these diseases offers a better potential to overcome soil-borne diseases, abiotic stresses, improve growth, yield and fruit quality. However, in Cameroon, there is little or no information on grafting between Rio Grande tomato and selected eggplant rootstocks. The objectives of this study were: 1) To determine the compatibility between Rio tomato grafting and a popular local eggplant (Nkeya) rootstock;2) To verify the effect of grafting on flowering time;3) To evaluate the effect of eggplant rootstocks on growth, fruit shelf life and fruit quality of Rio tomatoes. The trial was conducted in a randomized complete block design with 3 replications. Rio Grande (To) was the ungrafted treatment used as a control. To/Ko, To/To and To/Nk were the grafted treatments eventually transplanted to the field. Growth data were subjected to analysis of variance using SPSS software. Descriptive analyses were performed for the other parameters. The results revealed that, 1) The cleft grafting method used was successful with success rate varying between 90 and 100%;2) Grafting influenced flowering date (DAT, p = 0.05) as well as tomato growth parameters including stem height (H, 1.49 × 10<sup>-10</sup> p 0.00014) and collar diameter (SD, 4 × 10<sup>-1</sup><sup>4</sup> p 0.009). The To/To treatment was significantly different from the ungrafted cultivar To, which had no significant difference in stem diameter. A significant difference in plant height was also observed between the ungrafted treatment To and the To/Ko and To/Nk treatments. In addition, only the collar diameter of To/Nk was different from To. Also, there was no significant difference between To/To and To, but a significant difference between To/Ko and To/Nk compared to To. Conversely, grafting improved the lifespan of To/Ko. Ultimately, the grafting method used was successful, but further studies are needed to overcome the problem of graft incompatibility in order to improve the agronomic performance of grafted plants.展开更多
[Objective] To research the mass propagation system for cotyledon of Solanum torvum. [Methods] With cotyledon of S. torvum as the research object, ef- fects of hormone combination on callus induction and adventitious ...[Objective] To research the mass propagation system for cotyledon of Solanum torvum. [Methods] With cotyledon of S. torvum as the research object, ef- fects of hormone combination on callus induction and adventitious buds differentia- tion of S. torvum were researched. [Results] With cotyledon of S. torvum as the ex- plants, the optimal culture medium for callus induction and adventitious buds differ- entiation was MS+2.0 mg/L 6-BA+0.3 mg/L NAA. The induction rates of callus and adventitious bud reached 100% and 85%, respectively. The number of average buds was 6. The optimal culture medium for the induction of adventitious roots was MS+ 0.3 mg/L IAA. The rooting rate reached 100% and the number of average roots was 9. [Conclusions] One-step induction of callus and adventitious buds simplified the mass propagation system, and enhanced the test test efficiency.s展开更多
MicroRNAs (miRNAs) are -21 nucleotide (nt), endogenous RNAs that regulate gene expression in plants. Increasing evidence suggests that miRNAs play an important role in species-specific development in plants. Howev...MicroRNAs (miRNAs) are -21 nucleotide (nt), endogenous RNAs that regulate gene expression in plants. Increasing evidence suggests that miRNAs play an important role in species-specific development in plants. However, the detailed miRNA profile divergence has not been performed among tomato species. In this study, the small RNA (sRNA) profiles of Solanum lycopersicum cultivar 9706 and Solanum habrochaites species PI 134417 were obtained by deep sequencing. Sixty-three known miRNA families were identified from these two species, of which 39 were common. Further miRNA profile comparison showed that 24 known non-conserved miRNA families were species-specific between these two tomato species. In addition, six conserved miRNA families displayed an apparent divergent expression pattern between the two tomato species. Our results suggested that species-specific, non-conserved miRNAs and divergent expression of conserved miRNAs might contribute to developmental changes and phenotypic variation between the two tomato species. Twenty new miRNAs were also identified in S. lycopersicum. This research significantly increases the number of known miRNA families in tomato and provides the first set of small RNAs in S. habrochaites. It also suggests that miRNAs have an important role in species-specific plant developmental regulation.展开更多
文摘Organic fertilizers generally come from agricultural co-products. Their valuation is therefore a major issue for sustainable development. The main objective of this study aims to develop an organic fertilizer derived from moringa leaves and cocoa pod husks that can improve soil quality and plant growth. The experimental design consisted of completely randomized blocks in three repetitions. The experiment was carried out in five treatments: T0: no fertilization, T1: 100% cocoa pods, T2: 75% cocoa pods + 25% Moringa leaves;T3: 50% cocoa pods + 50% Moringa leaves;T4: 25% cocoa pods + 75% Moringa leaves;T5: 100% Moringa leaves. Three doses were applied: 1;2;4 kg/m2. The trial took place over three growing cycles. The results of the soil analysis compared to the control revealed a significant improvement in physicochemical parameters. Variation of pH from (6.1 to 7.2), calcium from (1.4 to 4.13), magnesium from (0.450 to 0.870), potassium from (0.096 to 0.365) cmol+/kg. Carbon and nitrogen were recorded (1.02% to 2.77%) and (0.12% to 2.56%) respectively. The CEC (cation exchange capacity) saw a clear improvement (4.2 to 9.03) cmol+/kg. Concerning the growth parameters, the control plants recorded an average height of (31.19 cm) while those that benefited from the treatments oscillated between (55.51 to 105.57 cm). In terms of production, the best yields are attributed to treatments T3 and T4 with (37.66 t/ha) and (51.176 t/ha) respectively. The T3 and T4 formulations could help improve the fertility of agricultural soils and the yield of market garden products such as eggplant.
文摘The purpose of this study was to characterize the chemical components of the extract of Solanum Nigrum Linn.(SNL),by LC-MS/MS,and to identify 33 compounds by positive and negative total ion flow maps.Network pharmacology and molecular docking methods were used to investigate the mechanism of action of SNL against ulcerative colitis(UC).A total of 282 component target genes and 1850 disease target genes were obtained,and 157 cross-targets and 16 core-targets were obtained after crossover.A total of 20 signaling pathways such as anti-inflammatory and anti-apoptotic were obtained by GO analysis and KEGG analysis,respectively.It is possible that the anti UC eff ect can be achieved by regulating proteins such as AKT1,EGFR,NFKB1,JUN,and HSP90AA1.Molecular docking results show that the anti UC active ingredients are well docked with the target protein molecules This study provides a scientific basis for the development and utilization of SNL.
基金supported by the grants CIPROM/2021/020 from Conselleria d’Educació, Universitats i Ocupació (Generalitat Valenciana, Spain)PID2021-128148OB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by “ERDF A way of making Europ”, as well as by the initiative “Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives” supported by the Government of Norway+1 种基金Conselleria d’Educació, Universitats i Ocupació de la Generalitat Valenciana for a pre-doctoral grant within the Santiago Grisolía programme (GRISOLIAP/2021/151)Spanish Ministerio de Ciencia e Innovación for a postdoctoral grant (RYC2021-031999-I) funded by MCIN/ AEI/10.13039/501100011033 and the European Union through NextG enerationE U/PRTR。
文摘As access to irrigation water becomes increasingly limited, introgression of relevant genomic regions from drought-tolerant wild genotypes is a promising breeding strategy for crop plants. In this study, nine eggplant(Solanum melongena) introgression lines(ILs) covering altogether 71.6% of the genome of the donor wildrelative parent S. incanum were evaluated for drought tolerance under water stress conditions. Plants at the five true leaves stage were irrigated at either 100%(control) or 30%(water stress) field capacity for 14 days, and growth and biochemical traits were measured. Reduced irrigation resulted in decreased growth and increased stress markers such as proline and malondialdehyde. Most ILs had lower growth and biomass production thanthe cultivated parent under both conditions. However, the wild alleles for two genomic regions related to stem and root dry weight conferred improved tolerance to water stress. In addition, several S. incanum alleles had a positive effect on important traits that may improve yield under drought conditions, such as leaf water content water use efficiency, and chlorophyll content. Fine-mapping the genomic regions for tolerance and reducinglinkage drag with regions affecting growth will be crucial for significantly improving eggplant drought tolerance through introgression breeding.
基金supported by grants from the Shanghai Agriculture Applied Technology Development Program(2021-02-08-00-12-F00792)Projects of International Cooperation and Exchanges NSFC(3201101910).
文摘Tomato is one of the most essential vegetable crops worldwide,with the highest annual production rate of all agricultural staples(Kimura and Sinha,2008).Long-term domestication of tomatoes has led to the selection of favorable agronomic traits that often come at the expense of stress resistance.To identify potential genetic targets for improved stress tolerance,whole-genome sequencing(WGS)has been applied to wild and cultivated accessions.
基金Supported by Key Laboratory Open Platform Project of Hunan Provincial Department of Education(16K047)Hunan Science and Technology Progject(2023NK 4289)。
文摘[Objectives] This study was conducted to investigate the scientific prevention and control of Solanum nigrum L. [Methods] Through experiments on S. nigrum from different sources, it was found that glyphosate stress had significant effects on antioxidant enzyme activity and oxidative damage of sensitive S. nigrum plants. [Results] Sensitive S. nigrum showed oxidative damage under glyphosate stress, while resistant S. nigrum responded to adversity damage by improving its antioxidant enzyme activity. The experimental results showed that the antioxidant enzymes and reduced glutathione of S. nigrum had certain metabolic detoxification effects under glyphosate stress. [Conclusions] This study provides a theoretical basis for scientific prevention and control of S. nigrum , and has a certain reference value for revealing the glyphosate resistance mechanism of S. nigrum .
文摘Background:Numerous studies have demonstrated the existence of approximately 7,500 genetic tomato varieties worldwide.Hence,it is crucial to assess the genetic diversity among tomato cultivars.This study aimed to investigate the genetic diversity of selected Iranian tomato cultivars(Solanum lycopersicum)using RAPD and ISSR molecular markers.Method:Ten RAPD primers and ten ISSR primers were employed to assess the genetic diversity among 10 tomato cultivars:Matin,RFT 112,Hirad,Golsar,Raha,Hengam,Hedah,Fasa,JS12,and Emerald.Data analysis involved the UPGMA algorithm and NTYSYSpc software.Results:RAPD analysis revealed close genetic proximity between Fasa and JS12,as well as between Raha and Hadieh.Conversely,the RFT 112,Hengam,Hirad,and Emerald cultivars exhibited significant genetic diversity within this group.ISSR primer analysis identified Hengam as the most diverse variety,while Matin,Emerald,and Vibrid,as well as Raha and JS12,displayed genetic similarities with minimal observed diversity.Furthermore,the overall analysis of the cultivars using RAPD and ISSR markers indicated that Hengam exhibited the highest diversity among all the varieties.Notably,Raha and JS12 demonstrated limited diversity in this analysis.Conclusion:This research demonstrates substantial genetic diversity among the investigated tomato varieties,with Hengam displaying the highest diversity within this group.Furthermore,ISSR markers proved more effective in determining genetic diversity in tomato plants.
文摘Evidence of the advantages of Solanum nigrum L.for the treatment of ulcerative colitis is accumulating.However,research revealing the treatment of Solanum diphyllum L.against ulcerative colitis is scarce.In this study,the chemical components of the extract of Solanum diphyllum L.were characterized by LC-MS/MS,identifying 31 compounds by positive and negative total ion flow maps.A total of 425 component target genes and 1900 disease target genes were obtained,and 121 intersection targets and 6 core targets were obtained after the intersection of the two genes by means of network pharmacology.GO analysis and KEGG analysis respectively obtained 20 signaling pathways such as anti-infl ammation.The results of molecular docking showed that the chemical components could successfully dock with the target proteins of the disease such as SRC,EGFR,PTGS2,MMP9,HSP90AA1,ESR1.This study provided a scientifi c basis for the development and application of Solanum diphyllum L.
基金supported by Local special projects in major health of Hubei Provincial Science and Technology Department(2022BCE054)Key scientific research projects of Hubei polytechnic University(23xjz08A)Hubei polytechnic University Huangshi Daye Lake high-tech Zone University Science Park joint open fund project(23xjz04AK).
文摘In 2020,breast cancer emerged as the leading type of cancer worldwide,surpassing lung cancer in the number of new cases.The high cost and frequent failure of current treatments due to drug resistance and other challenges underscore the urgent need for novel,affordable,efficient,and less toxic breast cancer therapies with fewer side effects.This study aims to investigate the molecular mechanisms by which Solanum Nigrum L.counters breast cancer,employing network pharmacology and molecular docking methods.Methods:The study identified the primary active compounds of Solanum Nigrum L.using databases such as TCMSP,TCM-ID,NPASS,and BATMAN.Prediction of the compounds'targets was facilitated by the SwissADME website,while main breast cancer targets were sourced from the GeneCards,OMIM,and TTD databases.The identified drug-disease intersection targets were analyzed using the STRING platform to construct a protein interaction network,which was then visualized and refined to select hub targets using Cytoscape 3.9.0 software.The Metascape database's MOCDE functional plugin was employed for identifying potential functional modules within the protein interaction network.Further,the DAVID database was utilized for GO and KEGG enrichment analyses of the intersection targets.Molecular docking of key active compounds with core targets was performed using AutoDock Tools 1.5.7 software.Lastly,the GEPIA2.0 database was used for predicting overall survival curves of hub targets and conducting a pan-cancer analysis.Results:Eleven active compounds of Solanum Nigrum L.,including Diosgenin,Tigogenin,and Quercetin,were identified from traditional Chinese medicine databases.We discovered 113 targets common to both Solanum Nigrum L.and breast cancer.Solanum Nigrum L.exhibits anti-breast cancer properties through interactions with 14 key targets,including SRC,PIK3R1,HSP90AA1,PIK3CA,AKT1,VEGFA,and ESR1.These interactions influence several critical signaling pathways,notably the cancer signaling pathway,PI3K-Akt signaling pathway,Ras signaling pathway,and EGFR signaling pathway.Survival analysis indicated that the aberrant expression of these 14 key targets significantly affects patient survival times.Furthermore,pan-cancer analysis highlighted marked differences in the expression patterns of these targets between breast cancer patients and control groups.Conclusion:Solanum Nigrum L.mediates its therapeutic impact on breast cancer through a comprehensive approach,targeting multiple components,targets,and pathways.
文摘Alcoholic liver injury is a liver disease caused by excessive alcohol consumption,which can lead to chronic liver disease death.Solanum Nigrum Linn taste bitter,cold,has the effect of clearing heat and detoxification,promoting blood and detumescence.Solanum Nigrum Linn fruit contains a variety of antioxidant enzymes,can remove the body produced by aerobic metabolism harmful substances.In this paper,a model of alcohol-induced liver injury in C57BL/6 mice was established to evaluate the protective effect of Solanum Nigrum Linn green fruit(SNGF)ethanolic extract on alcohol-induced liver injury.H&E staining and oil red O(ORO)staining showed that hepatic lobules were clearly demarcated,vacuoles were significantly reduced and lipid droplets were reduced in SNGF ethanolic extract treatment group.Serum levels of TC,TG,LDH,TBA,AKP,ALT and AST were decreased in the SNGF ethanolic extract treatment group,and SNGF ethanolic extract could clear reactive oxygen species(ROS)in time.MDA content was signifi cantly decreased after SNGF ethanolic extract treatment,while superoxide dismutase(SOD)and GSH-Px contents were increased after SNGF ethanolic extract treatment.These results suggest that SNGF ethanolic extract has a protective effect on alcohol-induced liver injury.
文摘The Rio Grande variety of tomato is widely grown because of its high productivity during the cold and dry seasons, and its resistance to Verticillium wilt (caused by Fusarium oxysporium) and to stem canker (Alternaria). Grafting tomato onto compatible rootstocks resistant to these diseases offers a better potential to overcome soil-borne diseases, abiotic stresses, improve growth, yield and fruit quality. However, in Cameroon, there is little or no information on grafting between Rio Grande tomato and selected eggplant rootstocks. The objectives of this study were: 1) To determine the compatibility between Rio tomato grafting and a popular local eggplant (Nkeya) rootstock;2) To verify the effect of grafting on flowering time;3) To evaluate the effect of eggplant rootstocks on growth, fruit shelf life and fruit quality of Rio tomatoes. The trial was conducted in a randomized complete block design with 3 replications. Rio Grande (To) was the ungrafted treatment used as a control. To/Ko, To/To and To/Nk were the grafted treatments eventually transplanted to the field. Growth data were subjected to analysis of variance using SPSS software. Descriptive analyses were performed for the other parameters. The results revealed that, 1) The cleft grafting method used was successful with success rate varying between 90 and 100%;2) Grafting influenced flowering date (DAT, p = 0.05) as well as tomato growth parameters including stem height (H, 1.49 × 10<sup>-10</sup> p 0.00014) and collar diameter (SD, 4 × 10<sup>-1</sup><sup>4</sup> p 0.009). The To/To treatment was significantly different from the ungrafted cultivar To, which had no significant difference in stem diameter. A significant difference in plant height was also observed between the ungrafted treatment To and the To/Ko and To/Nk treatments. In addition, only the collar diameter of To/Nk was different from To. Also, there was no significant difference between To/To and To, but a significant difference between To/Ko and To/Nk compared to To. Conversely, grafting improved the lifespan of To/Ko. Ultimately, the grafting method used was successful, but further studies are needed to overcome the problem of graft incompatibility in order to improve the agronomic performance of grafted plants.
基金Supported by the"Twelfth Five Year Plan"National Science and Technology Plan Project of Rural Areas in China(2012AA100103007)the Transformation Projects of National Agricultural Science and Technology Achievements(2013GB2E100381)+2 种基金the Guangxi Innovation Team Project of Staple Vegetable of Modern Agricultural Industry Technology System(nycytxgxcxtd-03-10)the Science and Technology Planning Project of Guangxi(14123006-35,14123004-3-5)the Special Fund for Basal Research in Guangxi Academy of Agricultural Sciences(2012YT05,2015YT67)~~
文摘[Objective] To research the mass propagation system for cotyledon of Solanum torvum. [Methods] With cotyledon of S. torvum as the research object, ef- fects of hormone combination on callus induction and adventitious buds differentia- tion of S. torvum were researched. [Results] With cotyledon of S. torvum as the ex- plants, the optimal culture medium for callus induction and adventitious buds differ- entiation was MS+2.0 mg/L 6-BA+0.3 mg/L NAA. The induction rates of callus and adventitious bud reached 100% and 85%, respectively. The number of average buds was 6. The optimal culture medium for the induction of adventitious roots was MS+ 0.3 mg/L IAA. The rooting rate reached 100% and the number of average roots was 9. [Conclusions] One-step induction of callus and adventitious buds simplified the mass propagation system, and enhanced the test test efficiency.s
基金supported by the National Basic Research Program of China (2009CB11900)the Special Fund for Agro-Scientific Research in the Public Interest, China (201003065)
文摘MicroRNAs (miRNAs) are -21 nucleotide (nt), endogenous RNAs that regulate gene expression in plants. Increasing evidence suggests that miRNAs play an important role in species-specific development in plants. However, the detailed miRNA profile divergence has not been performed among tomato species. In this study, the small RNA (sRNA) profiles of Solanum lycopersicum cultivar 9706 and Solanum habrochaites species PI 134417 were obtained by deep sequencing. Sixty-three known miRNA families were identified from these two species, of which 39 were common. Further miRNA profile comparison showed that 24 known non-conserved miRNA families were species-specific between these two tomato species. In addition, six conserved miRNA families displayed an apparent divergent expression pattern between the two tomato species. Our results suggested that species-specific, non-conserved miRNAs and divergent expression of conserved miRNAs might contribute to developmental changes and phenotypic variation between the two tomato species. Twenty new miRNAs were also identified in S. lycopersicum. This research significantly increases the number of known miRNA families in tomato and provides the first set of small RNAs in S. habrochaites. It also suggests that miRNAs have an important role in species-specific plant developmental regulation.