Increasing anthropogenic nitrogen(N)inputs has profoundly altered soil microbial necromass carbon(MNC),which serves as a key source of soil organic carbon(SOC).Yet,the response pattern of MNC and its contribution to S...Increasing anthropogenic nitrogen(N)inputs has profoundly altered soil microbial necromass carbon(MNC),which serves as a key source of soil organic carbon(SOC).Yet,the response pattern of MNC and its contribution to SOC across a wide range of N addition rates,remain elusive.In a temperate grassland with six years'consecutive N addition spanning seven rates(0-50 g N/(m^(2)·year))in Inner Mongolia,China,we explored the responses of soil MNC and its contribution to SOC.The soil MNC showed a hump-shaped pattern to increasing N addition rates,with the N saturation threshold at 18.07 g N/(m^(2)·year).The soil MNC was driven by nematode abundance and the ratio of bacterial to fungal biomass below the N threshold,and by plant biomass allocation pattern and diversity above the N threshold.The contribution of soil MNC to SOC declined with increasing N addition rates,and was mainly regulated by the ratio of MNC to mineral-associated organic carbon and plant diversity and the ratio of bacterial to fungal biomass.In addition,the soil MNC and SOC differentially responded to N addition and were mediated by disparate biological and geochemical mechanisms,leading to the decoupled MNC production from SOC formation.Together,in this N-enriched temperate grassland,the soilmicrobial necro-mass production tends to be insufficient as a general explanation linking SOC formation.This study expands the mechanistic comprehension of the connections between external N input and soil carbon sequestration.展开更多
This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different...This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.展开更多
Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic...Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic carbon (SOC) accumulation in a Mediterranean vegetable cropping system. The study involved four treatments: biowaste compost (COM), mineral NPK fertilizers (MIN), biowaste compost with half-dose N fertilizer (COMN), and unfertilized control (CK). The SOC stocks were increased in COM, COMN, and MIN by 20.2, 14.9, and 2.4 Mg ha-1 over CK, respectively. The SOC concentration was significantly related to mean weight diameter of aggregates (MWD) (P 〈 0.05, R^2 = 0.798 4) when CK was excluded from regression analysis. Compared to CK, COM and COMN increased the SOC amount in macroaggregates (〉 250 μm) by 2.7 and 0.6 g kg-1 soil, respectively, while MIN showed a loss of 0.4 g kg-1 soil. The SOC amount in free microaggregates (53-250 ttm) increased by 0.9, 1.6, and 1.0 g kg-1 soil for COM, COMN, and MIN, respectively, while those in the free silt plus clay aggregates (~ 53 ~m) did not vary significantly. However, when separating SOC in particle-size fractions, we found that more stable organic carbon associated with mineral fraction 〈 53 μm (MOM-C) increased significantly by 3.4, 2.2, and 0.7 g kg-1 soil for COM, COMN, and MIN, respectively, over CK, while SOC amount in fine particulate organic matter (POM) fraction (53-250 μm) increased only by 0.3 g kg-1 soil for both COM and COMN, with no difference in coarse POM 〉 250 μm. Therefore, we consider that biowaste compost could be effective in improving soil structure and long-term C sequestration as more stable MOM-C.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42130515 and 32301450)the Open Foundation of State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences.
文摘Increasing anthropogenic nitrogen(N)inputs has profoundly altered soil microbial necromass carbon(MNC),which serves as a key source of soil organic carbon(SOC).Yet,the response pattern of MNC and its contribution to SOC across a wide range of N addition rates,remain elusive.In a temperate grassland with six years'consecutive N addition spanning seven rates(0-50 g N/(m^(2)·year))in Inner Mongolia,China,we explored the responses of soil MNC and its contribution to SOC.The soil MNC showed a hump-shaped pattern to increasing N addition rates,with the N saturation threshold at 18.07 g N/(m^(2)·year).The soil MNC was driven by nematode abundance and the ratio of bacterial to fungal biomass below the N threshold,and by plant biomass allocation pattern and diversity above the N threshold.The contribution of soil MNC to SOC declined with increasing N addition rates,and was mainly regulated by the ratio of MNC to mineral-associated organic carbon and plant diversity and the ratio of bacterial to fungal biomass.In addition,the soil MNC and SOC differentially responded to N addition and were mediated by disparate biological and geochemical mechanisms,leading to the decoupled MNC production from SOC formation.Together,in this N-enriched temperate grassland,the soilmicrobial necro-mass production tends to be insufficient as a general explanation linking SOC formation.This study expands the mechanistic comprehension of the connections between external N input and soil carbon sequestration.
文摘This study was conducted to explore the effects of topography and land use changes on particulate organic carbon(POC),particulate total nitrogen(PTN),organic carbon(OC) and total nitrogen(TN) associated with different size primary particle fractions in hilly regions of western Iran.Three popular land uses in the selected site including natural forest(NF),disturbed forest(DF) and cultivated land(CL) and three slope gradients(0-10 %,S1,10-30 %,S2,and 30-50%,S3) were employed as the basis of soil sampling.A total of 99 soil samples were taken from the 0-10 cm surface layer in the whole studied hilly region studied.The results showed that the POC in the forest land use in all slope gradients was considerably more than the deforested and cultivated lands and the highest value was observed at NF-S1 treatment with 9.13%.The values of PTN were significantly higher in the forest land use and in the down slopes(0.5%) than in the deforested and cultivated counterparts and steep slopes(0.09%) except for the CL land use.The C:N ratios in POC fraction were around 17-18 in the forest land and around 23 in the cultivated land.In forest land,the silt-associated OC was highest among the primary particles.The enrichment factor of SOC,EC,was the highest for POC.For the primary particles,EC of both primary fractions of silt and clay showed following trend for selected land uses and slope gradients:CL> DF> NF and S3 > S2> S1.Slope gradient of landscape significantly affected the OC and TN contents associated with the silt and clay particles,whereas higher OC and TN contents were observed in lower positions and the lowest value was measured in the steep slopes.Overall,the results showed that native forest land improves soil organic carbon storage and can reduce the carbon emission and soil erosion especially in the mountainous regions with high rainfall in west of Iran.
文摘Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic carbon (SOC) accumulation in a Mediterranean vegetable cropping system. The study involved four treatments: biowaste compost (COM), mineral NPK fertilizers (MIN), biowaste compost with half-dose N fertilizer (COMN), and unfertilized control (CK). The SOC stocks were increased in COM, COMN, and MIN by 20.2, 14.9, and 2.4 Mg ha-1 over CK, respectively. The SOC concentration was significantly related to mean weight diameter of aggregates (MWD) (P 〈 0.05, R^2 = 0.798 4) when CK was excluded from regression analysis. Compared to CK, COM and COMN increased the SOC amount in macroaggregates (〉 250 μm) by 2.7 and 0.6 g kg-1 soil, respectively, while MIN showed a loss of 0.4 g kg-1 soil. The SOC amount in free microaggregates (53-250 ttm) increased by 0.9, 1.6, and 1.0 g kg-1 soil for COM, COMN, and MIN, respectively, while those in the free silt plus clay aggregates (~ 53 ~m) did not vary significantly. However, when separating SOC in particle-size fractions, we found that more stable organic carbon associated with mineral fraction 〈 53 μm (MOM-C) increased significantly by 3.4, 2.2, and 0.7 g kg-1 soil for COM, COMN, and MIN, respectively, over CK, while SOC amount in fine particulate organic matter (POM) fraction (53-250 μm) increased only by 0.3 g kg-1 soil for both COM and COMN, with no difference in coarse POM 〉 250 μm. Therefore, we consider that biowaste compost could be effective in improving soil structure and long-term C sequestration as more stable MOM-C.