This study investigated forest recovery in the Atlantic Rainforest and Rupestrian Grassland of Brazil using the diffusive-logistic growth(DLG)model.This model simulates vegetation growth in the two mountain biomes con...This study investigated forest recovery in the Atlantic Rainforest and Rupestrian Grassland of Brazil using the diffusive-logistic growth(DLG)model.This model simulates vegetation growth in the two mountain biomes considering spatial location,time,and two key parameters:diffusion rate and growth rate.A Bayesian framework is employed to analyze the model's parameters and assess prediction uncertainties.Satellite imagery from 1992 and 2022 was used for model calibration and validation.By solving the DLG model using the finite difference method,we predicted a 6.6%–51.1%increase in vegetation density for the Atlantic Rainforest and a 5.3%–99.9%increase for the Rupestrian Grassland over 30 years,with the latter showing slower recovery but achieving a better model fit(lower RMSE)compared to the Atlantic Rainforest.The Bayesian approach revealed well-defined parameter distributions and lower parameter values for the Rupestrian Grassland,supporting the slower recovery prediction.Importantly,the model achieved good agreement with observed vegetation patterns in unseen validation data for both biomes.While there were minor spatial variations in accuracy,the overall distributions of predicted and observed vegetation density were comparable.Furthermore,this study highlights the importance of considering uncertainty in model predictions.Bayesian inference allowed us to quantify this uncertainty,demonstrating that the model's performance can vary across locations.Our approach provides valuable insights into forest regeneration process uncertainties,enabling comparisons of modeled scenarios at different recovery stages for better decision-making in these critical mountain biomes.展开更多
Soil moisture has been considered as one of the main indicators that are widely used in the fields of hydrology, climate, ecology and others. The land surface temperature-vegetation index (LST-VI) space has comprehe...Soil moisture has been considered as one of the main indicators that are widely used in the fields of hydrology, climate, ecology and others. The land surface temperature-vegetation index (LST-VI) space has comprehensive information of the sensor from the visible to thermal infrared band and can well reflect the regional soil moisture conditions. In this study, 9 pairs of moderate-resolution imaging spectroradiometer (MODIS) products (MOD09A1 and MODllA2), covering 5 provinces in Southwest China, were chosen to construct the LST-VI space, and then the spatial distribution of soil moisture in 5 provinces of Southwest China was monitored by the temperature vegetation dryness index (TVDI). Three LST-VI spaces were constructed by normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and modified soil-adjusted vegetation index (MSAVI), respectively. The correlations between the soil moisture data from 98 sites and the 3 TVDIs calculated by LST-NDVI, LST-EVI and LST-MSAVI, respectively, were analyzed. The results showed that TVDI was a useful parameter for soil surface moisture conditions. The TVDI calculated from the LST-EVI space (TVDIE) revealed a better correlation with soil moisture than those calculated from the LST-NDVI and LST-MSAVI spaces. From the different stages of the TVDIE space, it is concluded that TVDIE can effectively show the temporal and spatial differences of soil moisture, and is an effective approach to monitor soil moisture condition.展开更多
1 Introduction Vegetation indices(VIs)derived from satellite observations are an essential source of information for operational monitoring of the Earth’s vegetation(Qu et al.,2018;Yan et al.,2008).However,soil backg...1 Introduction Vegetation indices(VIs)derived from satellite observations are an essential source of information for operational monitoring of the Earth’s vegetation(Qu et al.,2018;Yan et al.,2008).However,soil background dramatically affects the performances ofⅥs(Baret and Guyot,1991;Gilabert et al.,2002;Huete,1988;Qi et al,1994).展开更多
基金financial support from the Brazilian National Council for Scientific and Technological Development(CNPq)and the Federal University of Ouro PretoFinancial support from the Minas Gerais Research Foundation(FAPEMIG)under grant number APQ-06559-24 is also gratefully acknowledged。
文摘This study investigated forest recovery in the Atlantic Rainforest and Rupestrian Grassland of Brazil using the diffusive-logistic growth(DLG)model.This model simulates vegetation growth in the two mountain biomes considering spatial location,time,and two key parameters:diffusion rate and growth rate.A Bayesian framework is employed to analyze the model's parameters and assess prediction uncertainties.Satellite imagery from 1992 and 2022 was used for model calibration and validation.By solving the DLG model using the finite difference method,we predicted a 6.6%–51.1%increase in vegetation density for the Atlantic Rainforest and a 5.3%–99.9%increase for the Rupestrian Grassland over 30 years,with the latter showing slower recovery but achieving a better model fit(lower RMSE)compared to the Atlantic Rainforest.The Bayesian approach revealed well-defined parameter distributions and lower parameter values for the Rupestrian Grassland,supporting the slower recovery prediction.Importantly,the model achieved good agreement with observed vegetation patterns in unseen validation data for both biomes.While there were minor spatial variations in accuracy,the overall distributions of predicted and observed vegetation density were comparable.Furthermore,this study highlights the importance of considering uncertainty in model predictions.Bayesian inference allowed us to quantify this uncertainty,demonstrating that the model's performance can vary across locations.Our approach provides valuable insights into forest regeneration process uncertainties,enabling comparisons of modeled scenarios at different recovery stages for better decision-making in these critical mountain biomes.
基金Supported by the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China during the 12th Five-Year Plan Period(Nos.2011BAD32B01 and 2012BAH29B02)
文摘Soil moisture has been considered as one of the main indicators that are widely used in the fields of hydrology, climate, ecology and others. The land surface temperature-vegetation index (LST-VI) space has comprehensive information of the sensor from the visible to thermal infrared band and can well reflect the regional soil moisture conditions. In this study, 9 pairs of moderate-resolution imaging spectroradiometer (MODIS) products (MOD09A1 and MODllA2), covering 5 provinces in Southwest China, were chosen to construct the LST-VI space, and then the spatial distribution of soil moisture in 5 provinces of Southwest China was monitored by the temperature vegetation dryness index (TVDI). Three LST-VI spaces were constructed by normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and modified soil-adjusted vegetation index (MSAVI), respectively. The correlations between the soil moisture data from 98 sites and the 3 TVDIs calculated by LST-NDVI, LST-EVI and LST-MSAVI, respectively, were analyzed. The results showed that TVDI was a useful parameter for soil surface moisture conditions. The TVDI calculated from the LST-EVI space (TVDIE) revealed a better correlation with soil moisture than those calculated from the LST-NDVI and LST-MSAVI spaces. From the different stages of the TVDIE space, it is concluded that TVDIE can effectively show the temporal and spatial differences of soil moisture, and is an effective approach to monitor soil moisture condition.
基金granted by Land Resources Evolution Mechanism and Sustainable Use in Global Black Soil Critical Zone(IGCP 665)Geochemical Survey of Land Quality in 1:25 Northeast China Black Soil(Grant No.DD20160316).
文摘1 Introduction Vegetation indices(VIs)derived from satellite observations are an essential source of information for operational monitoring of the Earth’s vegetation(Qu et al.,2018;Yan et al.,2008).However,soil background dramatically affects the performances ofⅥs(Baret and Guyot,1991;Gilabert et al.,2002;Huete,1988;Qi et al,1994).