期刊文献+
共找到776,629篇文章
< 1 2 250 >
每页显示 20 50 100
Electric-Field-Driven Generative Nanoimprinting for Tilted Metasurface Nanostructures
1
作者 Yu Fan Chunhui Wang +6 位作者 Hongmiao Tian Xiaoming Chen Ben QLi Zhaomin Wang Xiangming Li Xiaoliang Chen Jinyou Shao 《Nano-Micro Letters》 2026年第1期290-305,共16页
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p... Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality. 展开更多
关键词 Generative nanoimprinting Electric field assistance Tilted metasurface structures Large-area fabrication
在线阅读 下载PDF
Coupled Effects of Single-Vacancy Defect Positions on the Mechanical Properties and Electronic Structure of Aluminum Crystals
2
作者 Binchang Ma Xinhai Yu Gang Huang 《Computers, Materials & Continua》 2026年第1期332-352,共21页
Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled t... Vacancy defects,as fundamental disruptions in metallic lattices,play an important role in shaping the mechanical and electronic properties of aluminum crystals.However,the influence of vacancy position under coupled thermomechanical fields remains insufficiently understood.In this study,transmission and scanning electron microscopy were employed to observe dislocation structures and grain boundary heterogeneities in processed aluminum alloys,suggesting stress concentrations and microstructural inhomogeneities associated with vacancy accumulation.To complement these observations,first-principles calculations and molecular dynamics simulations were conducted for seven single-vacancy configurations in face-centered cubic aluminum.The stress response,total energy,density of states(DOS),and differential charge density were examined under varying compressive strain(ε=0–0.1)and temperature(0–600 K).The results indicate that face-centered vacancies tend to reduce mechanical strength and perturb electronic states near the Fermi level,whereas corner and edge vacancies appear to have weaker effects.Elevated temperatures may partially restore electronic uniformity through thermal excitation.Overall,these findings suggest that vacancy position exerts a critical but position-dependent influence on coupled structure-property relationships,offering theoretical insights and preliminary experimental support for defect-engineered aluminum alloy design. 展开更多
关键词 Aluminum crystal vacancy defect microstructural characterization stress response electronic structure thermomechanical coupling
在线阅读 下载PDF
Seismic response of existing stone masonry structures on soft soil foundations
3
作者 Xin Zhao Haojiang Shang Yingxiong Wu 《Earthquake Research Advances》 2025年第3期88-99,共12页
The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil... The coastal region of Fujian contains numerous existing stone masonry structures,many of which are constructed on soft soil sites.Previous studies have shown that the soil-structure interaction(SSI)effect on soft soil foundations can prolong the structure's natural vibration period and enhance its seismic response.We develops a soilstructure interaction system model and a comparative rigid foundation model using the finite element software LS-DYNA to investigate the impact of SSI on the dynamic characteristics and seismic response of stone structures.The results indicate that the SSI effect alters stone structures'dynamic properties and seismic response.This alteration is evident in the extended natural vibration period,which reduces overall stiffness,increases interstory displacement angles,and slightly decreases the acceleration response.Under both SSI and FIX systems,the structural failure mode is characterized by the external collapse of the second-story stone walls,which causes the roof stone slabs to lose support and fall,leading to overall collapse.The FIX system demonstrates better structural integrity and stability with slower crack development.In contrast,the SSI system exhibits cracks that appear earlier and develop more rapidly,causing more severe damage.The research findings provide a theoretical basis for the seismic reinforcement of existing stone structures on soft soil foundations. 展开更多
关键词 Stone structure Soft soil foundation soil-structure interaction Seismic response LS-DYNA
在线阅读 下载PDF
Mixture of Bacillus Amyloliquefaciens and Bacillus Pumilus Modulates Community Structures of Rice Rhizosphere Soil to Suppress Rice Seedling Blight 被引量:1
4
作者 JIANG Nan QIU Jiehua +7 位作者 TIAN Dagang SHI Huanbin LIU Zhiquan WEN Hui XIE Shuwei CHEN Huizhe WU Meng KOU Yanjun 《Rice science》 2025年第1期118-130,I0067-I0070,共17页
Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of f... Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection. 展开更多
关键词 application strategy disease control disease resistance microbial community structure microbial community assembly process Oryza sativa
在线阅读 下载PDF
Crop straw incorporation increases the soil carbon stock by improving the soil aggregate structure without stimulating soil heterotrophic respiration
5
作者 Hongyu Lin Jing Zheng +6 位作者 Minghua Zhou Peng Xu Ting Lan Fuhong Kuang Ziyang Li Zhisheng Yao Bo Zhu 《Journal of Integrative Agriculture》 2025年第4期1542-1561,共20页
Crop straw incorporation is widely recommended to maintain crop yields and improve soil organic carbon(SOC)stocks as well as soil quality.However,the long-term effects of different straw incorporation practices on the... Crop straw incorporation is widely recommended to maintain crop yields and improve soil organic carbon(SOC)stocks as well as soil quality.However,the long-term effects of different straw incorporation practices on the SOC stock remain uncertain.In this study,a long-term experiment(2007 to 2018)with four treatments(MW_0:maize–wheat rotation with no straw incorporation,MW_(50):maize–wheat rotation with 50%chopped straw incorporation,MW_(b50):maize–wheat rotation with 50%in situ burned harvested straw,and MF_(50):maize–fallow rotation with 50%harvested maize straw incorporation)was set up to evaluate the response of the SOC stock to different straw incorporation methods.The results showed that the SOC stock significantly increased by 32.4,12.2 and 17.4%under the MW_(50),MW_(b50)and MF_(50)treatments,respectively,after continuous straw incorporation over a decade,while the SOC stock under MW0 was significantly reduced by 22.9%after the 11 year long-term experiment.Compared to MW_0,straw incorporation significantly increased organic carbon input,and improved the soil aggregate structure and the ratio of dissolved organic carbon(DOC)to particulate organic carbon(POC),but it did not significantly stimulate soil heterotrophic respiration,resulting in the increased SOC accumulation rate and SOC stocks of bulk soil.The increased ratio of DOC to microbial biomass carbon(MBC)enhanced the relative abundances of Acidobacteria and Proteobacteria but inhibited Bacteroidetes and Chloroflexi,and the bacterial relative abundances were the main reasons for the non-significant increase or even decrease in soil heterotrophic respiration with straw incorporation.The SOC stock would reach an equilibrium based on the results of Rothamsted carbon(RothC)model simulations,with a long-term equilibrium value of 18.85 Mg ha^(–1)under MW_(50).Overall,the results of the long-term field experiment(2007–2018)and RothC model simulation suggested that maize–wheat rotation with 50%chopped straw incorporation delivered the largest benefits for the SOC stock in calcareous soils of subtropical mountain landscapes over the long term. 展开更多
关键词 soil organic carbon crop straw soil aggregate soil heterotrophic respiration RothC model
在线阅读 下载PDF
Biochar application enhances soil quality by improving soil physical structure under particular water and salt conditions in arid region of Northwest China
6
作者 Yang Chen Xuyu Feng +5 位作者 Xiao Zhao Xinmei Hao Ling Tong Sufen Wang Risheng Ding Shaozhong Kang 《Journal of Integrative Agriculture》 2025年第8期3242-3263,共22页
Exploring the suitability of biochar for improving soil quality under different water and salt conditions is important for maintaining soil health and productivity in the arid regions of northwestern China.We compared... Exploring the suitability of biochar for improving soil quality under different water and salt conditions is important for maintaining soil health and productivity in the arid regions of northwestern China.We compared the effects of biochar application practices on soil physical,chemical and biological properties under different irrigation and water salinity levels in a two-year field experiment in a mulched and drip-irrigated maize field in Gansu Province,China.Eight treatments in total included the combination of two biochar addition rates of 0 t ha–1(B0)and 60 t ha–1(B1),two irrigation levels of full(W1)and deficit irrigation(W2;W2=1/2 W1)and two water salinity levels of fresh water(S0,0.71 g L–1)and brackish water(S1,4.00 g L–1).The minimum dataset method was used to calculate the soil quality index(SQI)under different treatments.Deficit and brackish water irrigation significantly reduced SQI by 3.80–9.80%through reducing some soil physical,chemical and biological properties.Biochar application significantly increased the SQI by 6.13 and 10.40%under full irrigation with fresh and brackish water,respectively.Biochar addition enhanced the relative abundance of beneficial bacteria(e.g.,Proteobacteria,Patescibacteria)in the soil in all water–salt treatments.The partial least squares path model showed that biochar application significantly enhanced the SQI mainly by improving soil aggregation and pore structure under particular water–salt conditions.This research provides an important basis for utilizing biochar to improve soil quality in arid regions of Northwest China under various water–salt conditions. 展开更多
关键词 biochar application DROUGHT soil salinity bacterial community soil quality
在线阅读 下载PDF
Hydrochar effects on the microstructure and hydromechanical behaviour of unsaturated compacted soils
7
作者 Huan Dong Anthony Kwan Leung +2 位作者 Jianbin Liu Ali Akbar Karimzadeh Rui Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期6045-6053,共9页
The effectiveness of using vegetation to stabilise shallow soil slopes heavily depends on the survival of vegetation,yet the amplification of extreme events induced by climate change threatens the health of plants cov... The effectiveness of using vegetation to stabilise shallow soil slopes heavily depends on the survival of vegetation,yet the amplification of extreme events induced by climate change threatens the health of plants covering slopes.Hydrochar is an environmentally friendly soil amender that can achieve the potential benefits of promoting plant growth for slope stabilisation and facilitation of waste upcycling.The mechanism underlying the hydrochar effects on the mechanical behaviour of unsaturated soils remains unclear.This study investigated the influence of grass-derived hydrochar on the water retention,compressibility,and shear strength of a compacted siltyeclay sand.Soil microstructural changes due to hydrochar amendment were measured to explain the soilehydrochar hydromechanical interaction.The increase in suction resulted in a less significant increase in yield stress and a negligible reduction in compressibility of the hydrochar-amended soil compared with the unamended case.This phenomenon was observed because hydrochar addition reduced the large pores with diameters greater than the macropore peak of 60 mm due to pore filling by hydrochar particles,resulting in a less substantial volume contraction during drying.Hydrochar introduced more significant effects on the soil’s shear strength in an unsaturated state compared to a saturated case.Despite the similarity of the unsaturated amended soil with the critical-state friction angle to the saturated case,the former exhibited a greater shear strength because the hydrochar addition improved water retention capability.As a result,the degree of saturation and,hence,Bishop’s effective stress were higher than those for the unamended case for a given suction. 展开更多
关键词 Hydrochar Saturated soils Unsaturated soils Mechanical behaviour Triaxial tests Critical state
在线阅读 下载PDF
Variations of soil bacterial community structure and function under different habitats of Tamarix ramosissima Ledeb. in the upper reaches of the Tarim River, Northwest China
8
作者 YANG Qianqian WU Xue +3 位作者 Bota BAHETHAN TIAN Cuiping YANG Xianyao WANG Xiantao 《Journal of Arid Land》 2025年第4期560-574,共15页
Diversity of soil microorganisms in different habitats of arid and semi-arid areas plays an important role in the soil texture and nutrient,promoting the growth of vegetation in those areas.To clarify the response of ... Diversity of soil microorganisms in different habitats of arid and semi-arid areas plays an important role in the soil texture and nutrient,promoting the growth of vegetation in those areas.To clarify the response of soil bacterial community diversity to the changes of environmental factors in different habitats,this study collected soil samples under the canopies of Tamarix ramosissima Ledeb.in oasis,transition zone,and desert habitats in the upper reaches of the Tarim River,Northwest China.High-throughput sequencing technology and PICRUSt2 software were used to explore the composition and function of soil bacterial communities in different habitats of T.ramosissima.The results showed that:(1)soil environmental factors under the canopy of T.ramosissima in the three habitats differed significantly,with soil moisture and nutrient conditions being better in the oasis;(2)Proteobacteria,Bacteroidetes,Firmicutes,Actinobacteria,and Gemmatimonadetes were the major bacterial communities in the three habitats;(3)soil bacterial community composition under the canopy of T.ramosissima varied greatly,and the richness was significantly different among the three habitats;(4)redundancy analysis indicated that soil water content and available phosphorous were the most important environmental factors influencing the composition of soil bacterial community;and(5)6 primary functions and 21 secondary functions were obtained by PICRUSt2 function prediction,with metabolism being the most dominant function.This study revealed the response of soil bacterial community composition to habitat changes and their driving factors in the upper reaches of the Tarim River,which could improve the understanding of ecological sensitivity of soil microorganisms in arid and semi-arid areas,and provide a theoretical foundation for improving soil quality and ecological protection. 展开更多
关键词 high-throughput sequencing soil bacterial community environmental factors function prediction soil nutrients
在线阅读 下载PDF
Subsoiling tillage increases water-use efficiency of winter wheat by improving soil hydraulic properties associated with pore structure in the North China Plain
9
作者 Meng Yuan Xiudi Shangguan +6 位作者 Xin Wang Shiyu Wei Bowen Li Zhendong Liu Rui Zong Yanli Fan Quanqi Li 《The Crop Journal》 2025年第4期1291-1300,共10页
Subsoiling is widely used to improve soil productivity in the North China Plain(NCP).However,its effects on pore network-based hydraulic properties and their relationship with water use efficiency(WUE)are far from cle... Subsoiling is widely used to improve soil productivity in the North China Plain(NCP).However,its effects on pore network-based hydraulic properties and their relationship with water use efficiency(WUE)are far from clear.In this study,we evaluated the effects of three tillage systems(rotary tillage at 15 cm depth,RT15;subsoiling at 40 cm depth,SS40;and subsoiling at 35 cm depth,SS35)on soil pore structure,hydraulic properties,and WUE during the 2022-2024 winter wheat seasons.Results showed that the effects of SS40 and SS35 were similar in optimizing the soil pore structure and hydraulic properties.Compared with RT15,SS40 and SS35 increased the soil macroporosity ratio,the soil pore connectivity,and the soil water storage.Structural equation modeling revealed that optimized soil pore structure under subsoiling directly and positively influenced the WUE or indirectly increasing the soil water storage.As a result,compared with RT15,SS40 and SS35 increased the spike number,kernel number per spike,and 1000-grain weight,and ultimately improved the yield(35.59% and 39.32%,respectively)and WUE(36.69% and 41.55%,respectively).Overall,the results revealed the mechanism of high-efficiency water use from the perspective of pore network-based hydraulic properties,providing a theoretical basis for food security. 展开更多
关键词 MACROPOROSITY Pore connectivity soil saturated hydraulic conductivity soil water stable infiltration rate Grain yield
在线阅读 下载PDF
Effects of a Full-Solid Waste-Based Soil Stabilizer:Strength,Durability and Microstructure
10
作者 PENG Zechuan GAO Yuxin +2 位作者 YANG Wen ZHOU Yichuan GAO Da 《Journal of Wuhan University of Technology(Materials Science)》 2025年第3期792-800,共9页
This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The ... This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The impact of SDG components on the strength and durability of solidified soil was analysed through a series of tests,including unconfined compressive strength,water stability coefficient,water absorption rate,drying-wetting cycles,and shrinkage tests.Furthermore,microstructure characteristics were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).The study shows that the solidified soil has excellent strength and durability when the SDG stabilizer contains 60% GGBGS,10% DG,and 30% CCS.Additionally,increasing the DG content negatively affects the soil's resistance to water.The SDG stabilizer has potential chemical cementitious characteristics and the calcium carbide slag is rich in calcium ions,which undergo an ion exchange reaction with minerals in the soil.These findings offer new ideas for the development of soil stabilizers. 展开更多
关键词 solid waste soil stabilizer solidification mechanism DURABILITY
原文传递
Plant community structure and environmental factors regulate N-P stoichiometry of soil and leaves of larch forests in northern China
11
作者 Wenjing Fang Ming Ouyang +7 位作者 Qiong Cai Suhui Ma Zhengbing Yan Haojie Su Jiangling Zhu Chengjun Ji Zhiyao Tang Jingyun Fang 《Journal of Forestry Research》 2025年第1期103-113,共11页
Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant co... Ecological stoichiometry plays an important role in revealing the mechanisms underlying biogeochemical cycles and ecosystem functions.Abiotic factors have strong effects on N-P stoichiometry,yet the impact of plant community structure,especially in forests,has not been fully elucidated.We investigated 68 plots in larch forests in northern China to explore how plant community structure and environmental factors affect the N-P stoichiometry of soil and leaves.The results showed significant differences in soil and leaf N-P stoichiometry among the three larch forests,P concentration and N:P ratio of leaves were significantly related to those of soil.Except for larch forest type,N-P stoichiometry was also regulated by elevation,climatic factors,and community structure.With increasing age(from 25 to 236 years),soil N and N:P ratio significantly increased,especially in the topsoil.With increasing mean DBH,leaf N concentration and N:P ratio also increased,indicating a shift in nutrient limitations with stand growth.These findings provide evidence that plant community structure and environmental factors regulate soil and leaf N-P stoichiometry,which is critically important for understanding biogeochemical cycles and forest management undergoing natural succession. 展开更多
关键词 N-P stoichiometry Larch forest Community structure Stand age LEAF
在线阅读 下载PDF
Primary Succession of Algal Community Structure in Desert Soil 被引量:18
12
作者 胡春香 刘永定 《Acta Botanica Sinica》 CSCD 2003年第8期917-924,共8页
The microbiotic crust study is among new focuses in investigating on the desertification control. Based on determination of algal crusts with different successive ages (4-, 8-, 17-, 34-, 42-year-old) and unconsolidate... The microbiotic crust study is among new focuses in investigating on the desertification control. Based on determination of algal crusts with different successive ages (4-, 8-, 17-, 34-, 42-year-old) and unconsolidated sand in the desert area, species composition and clustering analyses were carried out in this study. Results on successional orientation revealed that (1) the abundance of Cyanophyta, specially of Scytonema javanicum gradually decreased; (2) the abundance of Chlorophyta, Bacillariophyta and a species of Cyanophyta, Phormidium tenue increased; (3) the biodiversity increased gradually with the community succession; and (4) biomass of microalgae increased at the early stage, but decreased at the later stage due to the abundance of lichens and mosses. But, the speed of natural succession was so slow that the community-building species was still the first dominant species after 42 years, except that its dominant degree decreased just slightly. However, successive speed and trend were affected by water, vegetation coverage, terrain, time and soil physico-chemical properties as well, especially Mn content in the soil appeared to have a threshold effect. 展开更多
关键词 desert soil ALGAE community structure primary succession
在线阅读 下载PDF
Effect of soil moisture gradient on structure of broad-leaved/Korean pine forest in Changbai Mountain 被引量:1
13
作者 王艳 王庆礼 +3 位作者 代力民 王淼 周莉 代保清 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第2期119-123,i002,共6页
A 112 m×8 m sample pot which includes 14 sub-plots was set up along the slope in Hongshi Forestry Farm of Baihe Forestry Bureau (127°55′E, 42°30′ N), Jilin Province in August 2002. Community structure... A 112 m×8 m sample pot which includes 14 sub-plots was set up along the slope in Hongshi Forestry Farm of Baihe Forestry Bureau (127°55′E, 42°30′ N), Jilin Province in August 2002. Community structure, soil moisture contents at 0–10 cm and 10–20 cm in depth, water content of litter as well as the contents of C, N and P of litter, living leaves and branches in the broad-leaved/Korean pine (Pinus korraiensis) forest were measured in each sub-plot on different slope positions. The analytical results showed that there existed an obvious soil moisture gradient along the slope: upper slope <middle slope< lower slope. The difference in soil moisture contents on different positions of slope led to a change of the stand structure of the braod-leaved/Korean pine forest. The proportion ofQuercus mongolica gradually increased with the decrease of soil moisture content and that of other major tree species in the broad-leaved/Korean pine forest gradually decreased or disappeared. The dynamic of soil moisture contents in the litter layer was as same as that in mineral soils. The decomposition rates of the litter on different slope positions were different and the dry weights of existent litter varied significantly. The soil nutrients in the litter on the lower slope was richer than that on the upper slope due to the different stand structure on the different slope positions. The moisture content and nutrient contents of soil had effects on the composition, decomposition, and the nutrient release of litter, thus affecting stands growth and stand structure and finally leading to the change of ecosystem. Key words Soil moisture gradient - nutrient - Stand structure - Broad-leaved/Korean pine forest CLC number S718.5 Document code A Foundation item: This study was supported by the NKBRSF (G1999043407-1), Tackle Key Problem of Science and technology of China (2001BA510B-07), Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-406, SCXZD0101), NKTRDP (2001BA510B-07. 2002BA516A20).Biography: WANG Yan (1970-), female, Ph. D, associate professorResponsible editor: Song Funan 展开更多
关键词 soil moisture gradient NUTRIENT Stand structure Broad-leaved/Korean pine forest
在线阅读 下载PDF
Carbon pool structure and carbon density of soil in Pinus koraiensis plantation ecosystem 被引量:4
14
作者 丁壮 张彦东 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期177-182,I0005,共7页
The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west s... The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability. 展开更多
关键词 soil carbon pool soil carbon density soil carbon content Pinus koraiensis plantation ecosystem mixed forest
在线阅读 下载PDF
Effect of Deep Loosening on Soil Structure and Maize Root Activity 被引量:2
15
作者 闫伟平 边少锋 +6 位作者 谭国波 赵洪祥 李海 张丽华 方向前 孟祥盟 孙宁 《Agricultural Science & Technology》 CAS 2016年第11期2539-2542,2545,共5页
[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water res... [Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water resources. [Method] Three differ- ent loosening treatments for maize in ridges were performed in field trials as fol- lows: conventional ridge tillage, loosening the cm in spring (deep loosening in spring), and depth of 30 cm in autumn (deep loosening in soils between rows to a depth of 30 oosening the soils between rows to a autumn). Then the soil properties and the development of root system were measured to evaluate the effects of different loosening methods. [Result] Soil compactness was significantly reduced after deep loosening in spring, There were significant differences in soil compactness in 0-20 cm depth and soil bulk density in 0-40 cm depth between deep loosening in spring and deep loosening in autumn, deep loosening in spring and conventional ridge tillage. The soil water holding capacity was also significantly different between the two deep loosening treatments and conventional ridge tillage. Moreover, the root ac- tive absorption area of maize of deep loosening in spring was higher than that of conventionai ridge tillage. [Conclusion] Deep loosening can reduce soil compactness, bulk density, and improve soil water holding capacity, soil water content and the root activity of maize. Deep loosening in spring is better in soil improvement be- cause spring is closer to the growth period of crops than autumn. So, deep loosen- ing is conducive to the improvement of soil compactness and structure. 展开更多
关键词 Deep loosening soil compactness soil water content Root active ab- sorotion area
在线阅读 下载PDF
Soil nematode community structure on the northern slope of Changbai Mountain, Northeast China 被引量:7
16
作者 佟富春 肖以华 王庆礼 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第1期93-98,I0004,共7页
Soil nematode communities were investigated in the Changbai Mountain in Broad-leaved Korean Pine forest, Korean Pine and spruce-fix mixed forest, Dark Coniferous forest, Erman's birch forest and Alpine tundra along d... Soil nematode communities were investigated in the Changbai Mountain in Broad-leaved Korean Pine forest, Korean Pine and spruce-fix mixed forest, Dark Coniferous forest, Erman's birch forest and Alpine tundra along different altitude gradients from 762 m to 2 200 m a.s.l. Soil animal samples were collected from the litter layer and the soil depth of 0-5 cm, 5-10 cm and 10-20 cm at each site in the spring of 2001 and 2002. In total 27 nematode families and 60 genera were observed. The dominant genera were Plectus Bastian and Tylenchus Bastian and most of them live in litter layer. The total number of soil nematode was significantly correlated with soil moisture (r=0.357; p〈0.01). Nematodes were classified in bacterivores, fungivores, plant parasites, omnivores-predators, and omnivores according to known feeding habitats or stoma and esophageal morphology. Species richness of fungivorous nematode was higher than others in different vegetation communities and soil depths. The total number of soil nematode and trophic groups varied significantly (o〈0.05) in response to different soil depths. The fungivore/bacterivore ratio (F/B) and the ratio of (fungivores + bacterivores)/plant-parasites (WI) also changed significantly (p〈0.05) in different soil depths. In conclusion, soil moisture is proved to be one of the most important variables affecting nematode density and trophic composition, and the altitude gradient does not significantly affect the ecological indices of soil nematode such as trophic diversity (TD) and the Shannon index (H'). 展开更多
关键词 Changbai Mountain community structure nematode community
在线阅读 下载PDF
Soil-structure interaction of unsymmetrical trench installation culvert 被引量:8
17
作者 陈保国 郑俊杰 鲁燕儿 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期94-98,共5页
The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately ... The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately reflect the changes in vertical loads on trench installation culverts. So the changes in vertical earth pressure and soil arching effect in the backfill for an unsymmetrical trench installation culvert are studied based on a full scale experiment and finite element (FE) simulation. The variation laws of foundation pressure and settlement are also analyzed. Meanwhile, the influence of eccentric load induced by an unsymmetrical trench installation on the interaction of a soil- structure system is discussed. Results show that soil arch is formed when the backfill on the culvert reaches a certain height. It can relieve the earth pressure concentration on the crest of the culvert, but it is instable. The earth pressures obtained by full scale experiment and numerical simulation are greater than those calculated by the current CGCDHBC method. The eccentric load effect on the culvert has a significant influence on the stress states and deformation of the soil-structure system. 展开更多
关键词 soil-structure interaction soil arching effect eccentric load effect full scale experiment numerical simulation
在线阅读 下载PDF
Soil structure characters of different soil and water conservation plantations in typical black soil region 被引量:1
18
作者 史长婷 王恩姮 +1 位作者 谷会岩 陈祥伟 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期151-154,I0004,共5页
A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-cap... A study was conducted to determine the characters of soil structure in different water and soil conservation forests in Keshan County,northwest of Heilongjiang Province,China.The soil bulk density,the ratio of non-capillary porosity and capillary porosity(NCP/CP),and the generalized soil structure index(GSSI) were measured for Fraxinus mandshurica,Larix gmelini,Pinus sylvestris var.mongolica,and Picea koraiensis plantations as well as the abandoned land(as control) adjacent to the forests in typical black soil region.Results show that at soil depth of 0–30cm,the soil bulk density of F.mandshurica forest and L.gmelini forest was lower than that of P.sylvestris var.mongolica forest and P.koraiensis forest,with the relative decrease of 8.04%–11.01%.The soil bulk density of L.gmelini forest was significantly different from that of the P.sylvestris var.mongolica forest and P.koraiensis forest.The NCP/CP values of the four types of plantations were all higher(59.75%–128.82% relatively) than that of abandoned land(p〈0.05),indicating that the soil aeration and permeability under forest were enhanced,especially under L.gmelini forest.GSSI values of the four types of forests were also relatively higher(2.98%–4.36%) than abandoned land(p〈0.05),indicating that those soil and water conservation forests,especially the F.mandshurica forest and P.koraiensis forest,can promote soil condition to approximate ideal soil structure.The result of this study can provide theoretical basis for scientifically evaluating the effects of vegetation restoration on soil quality in typical black soil region. 展开更多
关键词 typical black soil soil and water conservation plantation Bulk density GSSI NCP/CP
在线阅读 下载PDF
Forest structure,productivity and soil properties in a subtropical ever-green broad-leaved forest in Okinawa,Japan 被引量:3
19
作者 徐小牛 王勤 柴田英昭 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期271-276,共6页
Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relative... Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa. 展开更多
关键词 diversity index evergreen broad-leaved forest species composition soil nutrient soil-vegetation relation subtropical zone
在线阅读 下载PDF
Results of soil moisture inversion from radiometer biased by periodic change of row structure on farmland 被引量:4
20
作者 郑兴明 赵凯 张树文 《遥感学报》 EI CSCD 北大核心 2012年第6期1310-1330,共21页
根据离散方法建模垄行结构农田表面微波发射率,与地基多频率微波辐射计实测发射率比较发现:二者之间的平均绝对偏差小于0.01,证实了利用离散化方法建模农田表面微波发射率的可行性。在给定条件下不同观测方位角农田表面微波发射率与平... 根据离散方法建模垄行结构农田表面微波发射率,与地基多频率微波辐射计实测发射率比较发现:二者之间的平均绝对偏差小于0.01,证实了利用离散化方法建模农田表面微波发射率的可行性。在给定条件下不同观测方位角农田表面微波发射率与平坦表面的发射率差值在0.02与0.05之间,这说明农田结构微波辐射具有各向异性,行结构对发射率的影响在农田电磁波辐射建模过程中不可忽略。本文分析了不同土壤湿度条件下农田垄行结构可能引起的土壤湿度反演误差,结果表明,土壤湿度变化范围是0.02—0.5cm3/cm3,垄行结构引起的土壤湿度反演误差为0—0.1cm3/cm3,此误差超过了土壤湿度反演的容限值,因此在进行农田参数的遥感提取过程中不可忽略周期性垄行结构对表面发射率的影响。 展开更多
关键词 遥感技术 遥感方式 遥感图像 应用
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部