[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected la...[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected land use type were examined in Hainan. [Result] The results showed that GRSP and SOC content of four artificial land use types decreased compared with the natural secondary forest land,the GRSP content of all samples ranged from 0.53-4.80 mg/g,accounting for 7.9%-23.4% of the SOC,which means that GRSP was one important component of SOC pool in soil. The ratio of GRSP to SOC was significantly different among land use types but the depths. GRSP and SOC exhibited obvious vertical distribution pattern. GRSP was significantly positively related to SOC and sand content but negatively related to silt and clay content. [Conclusion] The sand content determined the GRSP content significantly and loam was better matrix for GRSP accumulation than clay.展开更多
A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeas...A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeasures according to the severity of ARD.Healthy two-year-old seedlings with consistent growth were selected,of which the root stock was T337 and the scion was Yanfu 3.There were significant differences in biomass between methyl bromide fumigation and replanted treatments,and the difference was the largest in clay loam,followed by sandy loam,and loam,which verified ARD in clay loam was most serious,followed by sandy loam and loam.Based on high-throughput sequencing of fungi in soil samples,fungal richness and diversity were the highest in clay loam,followed by sandy loam,and loam.The relative abundance of Fusarium in SX,SL,FX,FL,WX and WL was 7.33%,19.32%,2.70%,4.24%,10.71%and 23.87%,respectively.Based on Real-time quantitative analysis,there were significant differences in the number of Fusarium oxysporum and Fusarium solani between methyl bromide fumigation and replanted treatments,i.e.,clay loam>sandy loam>loam.Fusarium was the main pathogen causing ARD.This shows that ARD is the most serious under replanted clay loam condition.High-throughput sequencing technology was used to prove the difference in Fusarium was one of the important reasons for ARD under different soil textures.This technology provides a new idea for the prevention and control of ARD.展开更多
Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis i...Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis in the kernel during grain filling in high gluten content wheat ZM 9023, under conditions of pond culture. The content of starch and its components were measured according to the method of double-wave length described by Bao (1996). ADP-glucose pyrophosphorylase (AGPP) activity was tested according to the method described by Doehlert et al. (1988). Soluble starch synthase (SSS) and starch branching enzyme (SBE) activities were tested according to the method described by Nakamura et al. (1989). The amylose, amylopectin, and total starch accumulating rate in the kernel of ZM 9023 were found to be a single-peak curve in three different soil textures during grain filling, and peaked 20, 15, and 15 d after anthesis, respectively. The activities of the enzymes, AGPP, SSS, and SBE, in the kernel of ZM 9023 had a single-peaked curve, which peaked 20, 15, and 15 d after anthesis, respectively. The activities of the above three enzymes of ZM 9023 were higher in the sand-loam soil. The accumulating peak of amylose formed later compared to that of amylopectin. The sand-loam soil could help high gluten content cultivars to synthesize starch.展开更多
This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions...This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.展开更多
The acclimatization of plant xylem to altered environmental conditions has attracted considerable attention from researchers over several decades. Plants growing in natural environments must seek a balance between wat...The acclimatization of plant xylem to altered environmental conditions has attracted considerable attention from researchers over several decades. Plants growing in natural environments must seek a balance between water uptake and the water loss of leaves from evaporation. Thus, the adaptation of xylem to different soil textures is important in maintaining plant water balance. In this study, we investigated the xylem changes of cotton(Gossypium herbaceum L.) xylem in sandy, clay and mixed soils. Results showed that soil texture had a significant effect on xylem vessel diameter and length of stems and roots. Compared with G. herbaceum growing in the clay soil, those plants growing in the sandy soil developed narrower and shorter xylem vessels in their roots, and had a higher percentage of narrow vessels in their stems. These changes resulted in a safer(i.e. less vulnerable to cavitation), but less-efficient water transport system when soil water availability was low, supporting the hydraulic safety versus efficiency trade-off hypothesis. Furthermore, in sandy and mixed soils, the root: shoot ratio of G. herbaceum increased twofold, which ensures the same efficiency of leaves. In summary, our finding indicates that the morphological plasticity of xylem structure in G. herbaceum has a major role in the acclimatization of this plant species to different soil textures.展开更多
Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange...Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 0m, ≤30 0m and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550℃. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed.展开更多
The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal cond...The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal conductivity fluctuation”which characterizes the microscale variation of conductivity within the solid phase.It is proposed to link the“local fluctuation”of thermal conductivityλwith the soil texture-the information that is available at the scale of engineering applications.It was possible to relate the skeleton thermal conductivity with the grain size distribution of the soil.Finally,based on a large series of numerical simulations,the paper provides four triangle diagrams(at different organic matter contents:0%,2%,4%and 6%)relating the value ofλ;with volume fraction of individual soil separates.This result is extremely important from the practical point of view.One can quickly evaluateλ;value provided that information on the grain size distribution and organic matter content is available.展开更多
Background:Biochar(BC)amendment to soils can affect crop yields negatively,especially during the first season following application,by binding essential nutrients;however,little data exist on its effects on warm‐clim...Background:Biochar(BC)amendment to soils can affect crop yields negatively,especially during the first season following application,by binding essential nutrients;however,little data exist on its effects on warm‐climate forage yields and nutritive values.We determined the effects of BC(0,5,10MgDMha^(−1)),dairy manure(0 and 10 MgDMha^(−1)),soil type(loamy sand,sandy loam,clay loam),and tillage practices(till[incorporation of soil amendments with tillage]vs.no till[soil amendments surface application])on the nutrient profile and dry matter yield(DMY)of Bermudagrass(Cynodon dactylon(L.)Pers.),maize(Zea mays L.),and sorghum‐Sudan(Sorghum drummondii(Nees ex Steud.)Millsp.&Chase).Methods:Bermudagrass was harvested at the boot stage,sorghum‐Sudan when the canopy reached 90%light interception,and the maize 90–120 days after planting as silage.Samples were dried and analyzed for nutrients and DMY.Results:BC and manure application were not detrimental to forage production or nutritive value to cattle in the first growing season.Conclusions:Effects varied across tillage and soil type;thus,it is essential to consider soil texture and nutrient makeup before choosing the proper tillage and amendments.Longer study periods may produce different results since,over time,BC can act as a slow‐release source of nutrients.展开更多
Dust emission caused by wind erosion of soil is an important surface process in arid and semi-arid regions.However,existing dust emission models pay insufficient attention to the impacts of aerodynamic entrainment of ...Dust emission caused by wind erosion of soil is an important surface process in arid and semi-arid regions.However,existing dust emission models pay insufficient attention to the impacts of aerodynamic entrainment of particles.In addition,studies of wind erosion processes do not adequately account for the dynamics of wind erosion rates and dust emission fluxes,or for the impact of soil texture on dust emission.Our wind tunnel simulations of wind erosion and dust emission showed that the soil texture,wind erosion duration,and shear velocity are major factors that affect the dynamics of wind erosion and dust emission.Because of the limited supply of surface sand and the change in surface erosion resistance caused by surface coarsening during erosion,the wind erosion rate and the flux of particles smaller than 10μm(PM_(10))caused by aerodynamic entrainment decreased rapidly with increasing erosion duration,which suggests that surface wind erosion and dust emission occur primarily during the initial stage of wind erosion.The PM_(10) emission efficiency decreased with increasing shear velocity following a power function,and finer textured sandy loam soils had greater PM_(10) emission efficiency than loamy sand soils.展开更多
The Monte Desert is characterized by a great diversity of landforms created with fluvial,alluvial which the vegetation patterns are related to.The present work has the following objectives:(1) determine whether topogr...The Monte Desert is characterized by a great diversity of landforms created with fluvial,alluvial which the vegetation patterns are related to.The present work has the following objectives:(1) determine whether topographical attributes,surface characteristics,soil properties and vegetation patterns vary between alluvial landforms,and(2) define whether morphometric,soil and surface properties influence vegetation patterns along alluvial landscape.Morphometric data were obtained by processing a 5 m digital elevation model.The coverage of rock fragments,fine sediments and mulch was quantified.Observations and descriptions of the soil profiles were restricted to the uppermost 50 cm.Vegetation properties were calculated using a Point Quadrat Method.The relationship between variables was evaluated through multivariate statistical analysis.The main results show the presence of 45 plant species distributed in 19 families,where shrubs are dominant.The wind effect,topographic wetness and dissection of the landscape are limiting factors of diversity.The coverage of superficial rock fragments influence vegetation coverage through the distribution and availability of rainwater.Furthermore,the different soil textures reveal that the silt content favors an increase in vegetation coverage.The presence of V horizon could condition the installation and development of vegetation in the early stages of growth.展开更多
Aims Optimizing water and fertilizer management for crops requires an understanding of root distribution.Maize(Zea mays L.)is currently the most widely planted cereal crop in China,yet the vertical dis-tribution of ma...Aims Optimizing water and fertilizer management for crops requires an understanding of root distribution.Maize(Zea mays L.)is currently the most widely planted cereal crop in China,yet the vertical dis-tribution of maize roots across different regions remains unknown.The aims of this work were(i)to quantify the effects of climate and soil texture on the vertical distribution of maize roots,and(ii)to show the depth distribution of root biomass in China.Methods We used data of maize root biomass from 11 Chinese ecological stations with discontinuous observations from 2004 to 2014 to fit the regression coefficientβfor an asymptotic equation Y=1-βd,where d is the soil depth and Y is the proportion of root biomass from the surface to depth d.A statistical model was then developed to quantify the effects of climate and soil texture on the fittedβval-ues.Using the statistical model,we map the depth distribution of maize root biomass in China.Important Findings Maize root biomass in the 0-100 cm soil depth varied by an order of magnitude at different stations,from 64 to 268 g m−2.Maize planted in sandy soils and/or maize with high accumu-lated temperature for development had higher root biomass and deeper rooting systems.The fittedβvalues ranged from 0.785 to 0.977,which can be modeled by an integration of the accu-mulated temperature during the maize growing period and the soil clay and sand fractions(R2=0.66,n=50,P<0.001).Up to 82%of maize planting regions in China showed shallower rooting systems where more than 90%and 95%of the root bio-mass occurred in the top 20 and 30 cm soil layers,respectively.Deeper rooting systems occurred in some temperate arid and temperate semi-arid regions,with less than 80%of the root bio-mass in the top 20 cm soil.Our findings highlighted the vertical distribution of maize roots,and underlined the spatial variability in the vertical distribution of roots across China’s planting areas of maize.展开更多
Soil organic carbon(SOC)plays an essential role in the carbon cycle and global warming mitigation,and it varies spatially in relation to other soil and environmental properties.But the national distributions and the i...Soil organic carbon(SOC)plays an essential role in the carbon cycle and global warming mitigation,and it varies spatially in relation to other soil and environmental properties.But the national distributions and the impact mechanisms of SOC remain debated in China.Therefore,how soil texture and climate factors affect the SOC content and the regional differences in SOC content were explored by analyzing 7857 surface soil samples with different land-use.The results showed that the SOC content in China,with a mean value of 11.20 g·kg^(-1),increased gradually from north to south.The SOC content of arable land in each geographical area was lower than in grassland and forest-land.Although temperature also played a specific role in the SOC content,precipitation was the most critical climate factor.The SOC content was positively correlated with the silt and clay content.The lower the temperature,the greater the effect of environmental factors on SOC.In contrast,the higher the temperature,the more significant impact of soil texture on SOC.The regional difference in SOC highlights the importance of soil responses to climate change.Tempera-ture and soil texture should be explicitly considered when predicting potential future carbon cycle and sequestration.展开更多
This study addressed the problem of low drainage efficiency or even no drainage in subsurface drainage systems buried in saturated-unsaturated zones above the water table.An indoor experiment on infiltration under pon...This study addressed the problem of low drainage efficiency or even no drainage in subsurface drainage systems buried in saturated-unsaturated zones above the water table.An indoor experiment on infiltration under ponded conditions in a homogeneous soil column was performed to study the effects of soil texture on the soil wetting front morphology,soil infiltration rate,drainage efficiency of the subsurface drainage pipe,vertical distribution of soil water content and salinity along the soil column.The results showed that the drainage process of subsurface drainage pipes above the water table was quite different from that of subsurface drainage pipes below the water table.When a subsurface drainage pipe was located in sandy soil,the migration of soil water toward the bottom of the drainage pipe was significant,and the water could not be discharged into the pipe.When the drainage pipe was located in loamy clay,the movement of soil water towards the bottom of the pipe was retarded,and the water could be discharged into the pipe.During the drainage process,the drainage of the pipe can produce nonequilibrium flow in the soil,and the continuity of the nonequilibrium flow can be affected by the hydraulic conductivity of the soil above the pipe,which can result in discontinuous drainage and low drainage efficiency.The water holding capacity,permeability and aeration of soil are important factors that affect the drainage under unsaturated conditions.Eliminating the hysteresis effect and capillary barrier around the drainage pipe and adjusting water holding capacity,the permeability and aeration of soil structure through a new subsurface drainage structure may enhance the drainage efficiency of subsurface drainage pipes in saturated-unsaturated zones.展开更多
Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The A...Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The African birch(Anogeissus leiocarpa(DC.)Guill.&Perr.)and pink jacaranda(Stereospermum kunthianum Cham.)trees are the dominant species in the agroforestry parkland system in the drylands of Tigray,Ethiopia.Smallholder farmers highly value these trees for their multifunctional uses including timber,firewood,charcoal,medicine,etc.These trees also could improve soil fertility.However,the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agroecological systems.Hence,we selected twelve isolated trees,six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions.We divided the canopy cover of each tree into three radial distances:mid-canopy,canopy edge,and canopy gap(control).At each distance,we took soil samples from three different depths.We collected 216 soil samples(half disturbed and the other half undisturbed)from each canopy position and soil depth.Bulk density(BD),soil moisture content(SMC),soil organic carbon(SOC),total nitrogen(TN),available phosphorus(AP),available potassium(AK),p H,electrical conductivity(EC),and cation exchange capacity(CEC)were analysed.Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species,CEC under A.leiocarpus,and soil p H under S.kunthianum,all the studied soils were improved under both species canopy as compared with canopy gap.SMC,TN,AP,and AK under canopy of these trees were respectively 24.1%,11.1%,55.0%,and 9.3% higher than those soils under control.The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties.These two species were recommended in the drylands with similar agro-ecological systems.展开更多
Soil texture is one of the most important soil characteristics that affect soil properties.Rapid acquisition of soil texture information is of great significance for accurate farmland management.Traditional soil textu...Soil texture is one of the most important soil characteristics that affect soil properties.Rapid acquisition of soil texture information is of great significance for accurate farmland management.Traditional soil texture analysis methods are relatively complicated and cannot meet the requirements of temporal and spatial resolution.This research introduced a self-developed vehicle-mounted in-situ soil texture detection system,which can predict the type of soil texture and the particle composition of the texture,and obtain real-time data during the measurement process without preprocessing the soil samples.The detection system is mainly composed of a conductivity measuring device,a camera,an auxiliary mechanical structure,and a control system.The soil electrical conductivity(ECa)and the texture features extracted from the surface image were input into the embedded model to realize real-time texture analysis.In order to find the best model suitable for the detection system,measurements were carried out in three test fields in Northeast and North China to compare the performance of different models applied to the detection system.The results showed that for soil texture classification,ExtraTrees performed best,with Precision,Recall,and F1 all being 0.82.For particle content of soil texture prediction,the R2 of ExtraTrees was 0.77,and RMSE and MAPE were 74.72 and 39.58.It was observed that ECa,Moment of inertia,and Entropy had larger weights in the drawn model influence weight map,and they are the main contributors to predicting soil texture.These results showed the potential of the vehicle-mounted in-situ soil texture detection system,which can provide a basis for fast,cost-effective,and efficient soil texture analysis.展开更多
[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events. [...[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events. [Method] Three chronosequences were selected for paired comparisons. Soil samples were collected at six depths with a 10 cm increment. Analysis of variance with general linear model and regression was performed for statistical analysis. [Result] In seasonally frozen soils where fragmentation of macroaggregates was stimulated, soil organic carbon level was positively associated with clay + silt proportion due to a wider textural range, better than sole clay content. Exponential function better fitted the experimental data to present progressively increased effectiveness of clay + silt content in maintaining carbon. Clay content explained 12%-41% and 14%-43% of variation via linear and exponential functions, respectively. Accordingly, clay + silt content explained 47%-65% and 46%-70%. [Conclusion] Texture reflected soil organic carbon occurrence as consequences of reclamation. For seasonally frozen soils with wider textural ranges, it is robust to adapt clay + silt content as dependent variable and exponential function. The generated algorithms provided an available pathway to estimate soil organic carbon losses following cultivation and to evaluate soil fertility.展开更多
Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measureme...Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion.展开更多
In recent years, selected cry genes from Bacillus thuringiensis(Bt) encoding the production of Cry proteins(Bt toxins) have been engineered into crop plants(Bt-crops). Through the cultivation of Bt crops and the...In recent years, selected cry genes from Bacillus thuringiensis(Bt) encoding the production of Cry proteins(Bt toxins) have been engineered into crop plants(Bt-crops). Through the cultivation of Bt crops and the application of Bt pesticides, Cry proteins could be introduced into arable soils. The interaction between the proteins and soils was analyzed in this study to investigate the affinity of Cry proteins in paddy soil ecosystems. Four Paddy soils were selected to represent different soil textures. Cry proteins were spiked in soils, and the amount of protein adsorbed was measured over 24 h. Desorption of Cry1Ab proteins from paddy soils was performed by washing with sterile Milli-Q water(H_2O_(MQ)), and subsequently extracted with an extraction buffer. The paddy soils had a strong affinity for Cry1Ab proteins. Most of the Cry1Ab proteins added(&gt; 98%) were rapidly adsorbed on the paddy soils tested. More Cry1Ab proteins were adsorbed on non-sterile soils than on sterile soils. Less than 2% of the adsorbed Cry1Ab proteins were desorbed using H2 OMQ, while a considerable proportion of the adsorbed proteins could be desorbed with the buffer, ranging from 20% to 40%.The amount of proteins desorbed increased with the increases in the initial amount of Cry1Ab proteins added to the paddy soils. The concentration of Cry1Ab proteins desorbed from the paddy soils was higher for sterile soils than non-sterile ones. Our results indicate that Bt toxins released via the cultivation of Bt crops, the application of Bt pesticides can be adsorbed on paddy soils, and soil texture could impose an impact on the adsorption capability.展开更多
Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used ...Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures(silty,clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform(TCM) and trichloroethylene(TCE). Mechanical soil aeration was effective for remediating VCHs(removal efficiency 〉 98%). The volatilization process was described by an exponential kinetic function.In the early stage of treatment(0–7 hr), rapid contaminant volatilization followed a pseudofirst order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8 hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner.展开更多
基金Supported by National Natural Science Foundation of China(40761024)~~
文摘[Objective] The aim was to reveal the effects of different land use types on soil composition. [Method] GPRS,soil organic carbon content and soil texture in 3 depths (0-10,10-20,20-50 cm) of 5 main kind of selected land use type were examined in Hainan. [Result] The results showed that GRSP and SOC content of four artificial land use types decreased compared with the natural secondary forest land,the GRSP content of all samples ranged from 0.53-4.80 mg/g,accounting for 7.9%-23.4% of the SOC,which means that GRSP was one important component of SOC pool in soil. The ratio of GRSP to SOC was significantly different among land use types but the depths. GRSP and SOC exhibited obvious vertical distribution pattern. GRSP was significantly positively related to SOC and sand content but negatively related to silt and clay content. [Conclusion] The sand content determined the GRSP content significantly and loam was better matrix for GRSP accumulation than clay.
基金supported by earmarked fund for National Modern Agro-industry Technology Research System of China(Grant No.CARS-27)Qingchuang Science and Technology Support Project of Shandong Colleges and Universities(Grant No.2019KJF020)+4 种基金Project Supported by Taishan Scholars(Grant No.ts20190923)Shandong Province Agricultural Major Applied Technology Innovation Projects(Grant No.SD2019ZZ008)the National Key Research and Development Program of China(Grant No.2016YFD0201114)the National Natural Science Foundation of China(Grant No.31672104)Fruit Innovation Team in Shandong Province,China(Grant No.SDAIT-06-07).
文摘A two-year field experiment was carried out in order to study the occurrence degree and mechanism of apple replant disease(ARD)in the apple orchards with different soil textures.So we can adopt appropriate controlmeasures according to the severity of ARD.Healthy two-year-old seedlings with consistent growth were selected,of which the root stock was T337 and the scion was Yanfu 3.There were significant differences in biomass between methyl bromide fumigation and replanted treatments,and the difference was the largest in clay loam,followed by sandy loam,and loam,which verified ARD in clay loam was most serious,followed by sandy loam and loam.Based on high-throughput sequencing of fungi in soil samples,fungal richness and diversity were the highest in clay loam,followed by sandy loam,and loam.The relative abundance of Fusarium in SX,SL,FX,FL,WX and WL was 7.33%,19.32%,2.70%,4.24%,10.71%and 23.87%,respectively.Based on Real-time quantitative analysis,there were significant differences in the number of Fusarium oxysporum and Fusarium solani between methyl bromide fumigation and replanted treatments,i.e.,clay loam>sandy loam>loam.Fusarium was the main pathogen causing ARD.This shows that ARD is the most serious under replanted clay loam condition.High-throughput sequencing technology was used to prove the difference in Fusarium was one of the important reasons for ARD under different soil textures.This technology provides a new idea for the prevention and control of ARD.
文摘Three kinds of soil texture (clay-loam, mid-loam, and sand-loam soil) were used to study the effects of soil texture on starch accumulating rate and the changes in activities of the key enzymes of starch synthesis in the kernel during grain filling in high gluten content wheat ZM 9023, under conditions of pond culture. The content of starch and its components were measured according to the method of double-wave length described by Bao (1996). ADP-glucose pyrophosphorylase (AGPP) activity was tested according to the method described by Doehlert et al. (1988). Soluble starch synthase (SSS) and starch branching enzyme (SBE) activities were tested according to the method described by Nakamura et al. (1989). The amylose, amylopectin, and total starch accumulating rate in the kernel of ZM 9023 were found to be a single-peak curve in three different soil textures during grain filling, and peaked 20, 15, and 15 d after anthesis, respectively. The activities of the enzymes, AGPP, SSS, and SBE, in the kernel of ZM 9023 had a single-peaked curve, which peaked 20, 15, and 15 d after anthesis, respectively. The activities of the above three enzymes of ZM 9023 were higher in the sand-loam soil. The accumulating peak of amylose formed later compared to that of amylopectin. The sand-loam soil could help high gluten content cultivars to synthesize starch.
文摘This study investigated the impact of soil texture and sweetpotato cropping system on soil erosion and nutrient loss in the drought infield of the Three Gorges Reservoir Area of Changjiang River under field conditions. A factorial experiment was conducted in the study using five soil textures and two cropping systems. The lost soil during the crop season was recovered by a soil-blocking device and the dry weights for the total lost soil and its nutrient components, such as ammonium nitrogen, effective phosphorus, K^+ and organic matter were analyzed. We found that soil texture significantly affected the dry weights of the total lost soil, effective phosphorus, K^+, and organic matter, while sweetpotato cropping systems and interaction between soil texture and sweetpotato cropping system affected the dry weights of the total lost soil, the effective phosphorus and organic matter. Among the five soil textures tested, Da and Huang caused significantly less soil erosion and nutrient loss compared with the other three soil textures; intercropping sweetpotato with corn significantly reduced soil erosion and nutrient loss.
基金funded by the International Science & Technology Cooperation Program of China (2010DFA92720)the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-T09)
文摘The acclimatization of plant xylem to altered environmental conditions has attracted considerable attention from researchers over several decades. Plants growing in natural environments must seek a balance between water uptake and the water loss of leaves from evaporation. Thus, the adaptation of xylem to different soil textures is important in maintaining plant water balance. In this study, we investigated the xylem changes of cotton(Gossypium herbaceum L.) xylem in sandy, clay and mixed soils. Results showed that soil texture had a significant effect on xylem vessel diameter and length of stems and roots. Compared with G. herbaceum growing in the clay soil, those plants growing in the sandy soil developed narrower and shorter xylem vessels in their roots, and had a higher percentage of narrow vessels in their stems. These changes resulted in a safer(i.e. less vulnerable to cavitation), but less-efficient water transport system when soil water availability was low, supporting the hydraulic safety versus efficiency trade-off hypothesis. Furthermore, in sandy and mixed soils, the root: shoot ratio of G. herbaceum increased twofold, which ensures the same efficiency of leaves. In summary, our finding indicates that the morphological plasticity of xylem structure in G. herbaceum has a major role in the acclimatization of this plant species to different soil textures.
文摘Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 0m, ≤30 0m and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550℃. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed.
文摘The thermal conductivity of the soil skeletonλ;is an essential parameter from the point of view of the correct assessment of soil overall/effective conductivity.This work introduces the concept of“local thermal conductivity fluctuation”which characterizes the microscale variation of conductivity within the solid phase.It is proposed to link the“local fluctuation”of thermal conductivityλwith the soil texture-the information that is available at the scale of engineering applications.It was possible to relate the skeleton thermal conductivity with the grain size distribution of the soil.Finally,based on a large series of numerical simulations,the paper provides four triangle diagrams(at different organic matter contents:0%,2%,4%and 6%)relating the value ofλ;with volume fraction of individual soil separates.This result is extremely important from the practical point of view.One can quickly evaluateλ;value provided that information on the grain size distribution and organic matter content is available.
基金U.S.Department of Agriculture,Grant/Award Number:NR213A750013G032NRCS grant,Grant/Award Number:NR213A750023C001Capacity Building Grants for Non‐Land Grant College of Agriculture,Grant/Award Number:2020‐70001‐31552。
文摘Background:Biochar(BC)amendment to soils can affect crop yields negatively,especially during the first season following application,by binding essential nutrients;however,little data exist on its effects on warm‐climate forage yields and nutritive values.We determined the effects of BC(0,5,10MgDMha^(−1)),dairy manure(0 and 10 MgDMha^(−1)),soil type(loamy sand,sandy loam,clay loam),and tillage practices(till[incorporation of soil amendments with tillage]vs.no till[soil amendments surface application])on the nutrient profile and dry matter yield(DMY)of Bermudagrass(Cynodon dactylon(L.)Pers.),maize(Zea mays L.),and sorghum‐Sudan(Sorghum drummondii(Nees ex Steud.)Millsp.&Chase).Methods:Bermudagrass was harvested at the boot stage,sorghum‐Sudan when the canopy reached 90%light interception,and the maize 90–120 days after planting as silage.Samples were dried and analyzed for nutrients and DMY.Results:BC and manure application were not detrimental to forage production or nutritive value to cattle in the first growing season.Conclusions:Effects varied across tillage and soil type;thus,it is essential to consider soil texture and nutrient makeup before choosing the proper tillage and amendments.Longer study periods may produce different results since,over time,BC can act as a slow‐release source of nutrients.
基金supported by the National Natural Science Foundation of China(Nos.42077069 and U21A2001).
文摘Dust emission caused by wind erosion of soil is an important surface process in arid and semi-arid regions.However,existing dust emission models pay insufficient attention to the impacts of aerodynamic entrainment of particles.In addition,studies of wind erosion processes do not adequately account for the dynamics of wind erosion rates and dust emission fluxes,or for the impact of soil texture on dust emission.Our wind tunnel simulations of wind erosion and dust emission showed that the soil texture,wind erosion duration,and shear velocity are major factors that affect the dynamics of wind erosion and dust emission.Because of the limited supply of surface sand and the change in surface erosion resistance caused by surface coarsening during erosion,the wind erosion rate and the flux of particles smaller than 10μm(PM_(10))caused by aerodynamic entrainment decreased rapidly with increasing erosion duration,which suggests that surface wind erosion and dust emission occur primarily during the initial stage of wind erosion.The PM_(10) emission efficiency decreased with increasing shear velocity following a power function,and finer textured sandy loam soils had greater PM_(10) emission efficiency than loamy sand soils.
文摘The Monte Desert is characterized by a great diversity of landforms created with fluvial,alluvial which the vegetation patterns are related to.The present work has the following objectives:(1) determine whether topographical attributes,surface characteristics,soil properties and vegetation patterns vary between alluvial landforms,and(2) define whether morphometric,soil and surface properties influence vegetation patterns along alluvial landscape.Morphometric data were obtained by processing a 5 m digital elevation model.The coverage of rock fragments,fine sediments and mulch was quantified.Observations and descriptions of the soil profiles were restricted to the uppermost 50 cm.Vegetation properties were calculated using a Point Quadrat Method.The relationship between variables was evaluated through multivariate statistical analysis.The main results show the presence of 45 plant species distributed in 19 families,where shrubs are dominant.The wind effect,topographic wetness and dissection of the landscape are limiting factors of diversity.The coverage of superficial rock fragments influence vegetation coverage through the distribution and availability of rainwater.Furthermore,the different soil textures reveal that the silt content favors an increase in vegetation coverage.The presence of V horizon could condition the installation and development of vegetation in the early stages of growth.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41530533 and 31370492).
文摘Aims Optimizing water and fertilizer management for crops requires an understanding of root distribution.Maize(Zea mays L.)is currently the most widely planted cereal crop in China,yet the vertical dis-tribution of maize roots across different regions remains unknown.The aims of this work were(i)to quantify the effects of climate and soil texture on the vertical distribution of maize roots,and(ii)to show the depth distribution of root biomass in China.Methods We used data of maize root biomass from 11 Chinese ecological stations with discontinuous observations from 2004 to 2014 to fit the regression coefficientβfor an asymptotic equation Y=1-βd,where d is the soil depth and Y is the proportion of root biomass from the surface to depth d.A statistical model was then developed to quantify the effects of climate and soil texture on the fittedβval-ues.Using the statistical model,we map the depth distribution of maize root biomass in China.Important Findings Maize root biomass in the 0-100 cm soil depth varied by an order of magnitude at different stations,from 64 to 268 g m−2.Maize planted in sandy soils and/or maize with high accumu-lated temperature for development had higher root biomass and deeper rooting systems.The fittedβvalues ranged from 0.785 to 0.977,which can be modeled by an integration of the accu-mulated temperature during the maize growing period and the soil clay and sand fractions(R2=0.66,n=50,P<0.001).Up to 82%of maize planting regions in China showed shallower rooting systems where more than 90%and 95%of the root bio-mass occurred in the top 20 and 30 cm soil layers,respectively.Deeper rooting systems occurred in some temperate arid and temperate semi-arid regions,with less than 80%of the root bio-mass in the top 20 cm soil.Our findings highlighted the vertical distribution of maize roots,and underlined the spatial variability in the vertical distribution of roots across China’s planting areas of maize.
基金supported by the National Natural Science Foundation of China(Grant No.42107368)Independent R&D project plan of State Forestry and Grassland Administration(No.LC-6-06)+1 种基金the Shaanxi Province Innovation Talent Promotion Plan Project Technology Innovation Team(No.2018TD-037)the National Natural Science Foundation of China(Grant No.51779204)。
文摘Soil organic carbon(SOC)plays an essential role in the carbon cycle and global warming mitigation,and it varies spatially in relation to other soil and environmental properties.But the national distributions and the impact mechanisms of SOC remain debated in China.Therefore,how soil texture and climate factors affect the SOC content and the regional differences in SOC content were explored by analyzing 7857 surface soil samples with different land-use.The results showed that the SOC content in China,with a mean value of 11.20 g·kg^(-1),increased gradually from north to south.The SOC content of arable land in each geographical area was lower than in grassland and forest-land.Although temperature also played a specific role in the SOC content,precipitation was the most critical climate factor.The SOC content was positively correlated with the silt and clay content.The lower the temperature,the greater the effect of environmental factors on SOC.In contrast,the higher the temperature,the more significant impact of soil texture on SOC.The regional difference in SOC highlights the importance of soil responses to climate change.Tempera-ture and soil texture should be explicitly considered when predicting potential future carbon cycle and sequestration.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51790533,No.41361071,No.51669029).
文摘This study addressed the problem of low drainage efficiency or even no drainage in subsurface drainage systems buried in saturated-unsaturated zones above the water table.An indoor experiment on infiltration under ponded conditions in a homogeneous soil column was performed to study the effects of soil texture on the soil wetting front morphology,soil infiltration rate,drainage efficiency of the subsurface drainage pipe,vertical distribution of soil water content and salinity along the soil column.The results showed that the drainage process of subsurface drainage pipes above the water table was quite different from that of subsurface drainage pipes below the water table.When a subsurface drainage pipe was located in sandy soil,the migration of soil water toward the bottom of the drainage pipe was significant,and the water could not be discharged into the pipe.When the drainage pipe was located in loamy clay,the movement of soil water towards the bottom of the pipe was retarded,and the water could be discharged into the pipe.During the drainage process,the drainage of the pipe can produce nonequilibrium flow in the soil,and the continuity of the nonequilibrium flow can be affected by the hydraulic conductivity of the soil above the pipe,which can result in discontinuous drainage and low drainage efficiency.The water holding capacity,permeability and aeration of soil are important factors that affect the drainage under unsaturated conditions.Eliminating the hysteresis effect and capillary barrier around the drainage pipe and adjusting water holding capacity,the permeability and aeration of soil structure through a new subsurface drainage structure may enhance the drainage efficiency of subsurface drainage pipes in saturated-unsaturated zones.
基金supported by the Sustainable Forest Management Project with the Local Communities in Tigray,northern Ethiopia,which was funded by the Norwegian Agency for Development Cooperation(NORAD)under the Norwegian Programme for Capacity Development in Higher EducationResearch for Development(NORHED)Programme(ETH 13/0018)+4 种基金the Ecological Organic Agriculture Project,Mekelle University,Ethiopiathe Institute of International Education-Scholars Rescue Fund(IIE-SRF)Norwegian University of Life Sciences(NMBU)Faculty of Environmental Sciences and Natural Resource Management(MINA)NORGLOBAL 2 Project in Ethiopia(303600)for supporting the research。
文摘Proposed agroforestry options should begin with the species that farmers are most familiar with,which would be the native multipurpose trees that have evolved under smallholder farms and socioeconomic conditions.The African birch(Anogeissus leiocarpa(DC.)Guill.&Perr.)and pink jacaranda(Stereospermum kunthianum Cham.)trees are the dominant species in the agroforestry parkland system in the drylands of Tigray,Ethiopia.Smallholder farmers highly value these trees for their multifunctional uses including timber,firewood,charcoal,medicine,etc.These trees also could improve soil fertility.However,the amount of soil physical and chemical properties enhanced by the two species must be determined to maintain the sustainable conservation of the species in the parklands and to scale up to similar agroecological systems.Hence,we selected twelve isolated trees,six from each species that had similar dendrometric characteristics and were growing in similar environmental conditions.We divided the canopy cover of each tree into three radial distances:mid-canopy,canopy edge,and canopy gap(control).At each distance,we took soil samples from three different depths.We collected 216 soil samples(half disturbed and the other half undisturbed)from each canopy position and soil depth.Bulk density(BD),soil moisture content(SMC),soil organic carbon(SOC),total nitrogen(TN),available phosphorus(AP),available potassium(AK),p H,electrical conductivity(EC),and cation exchange capacity(CEC)were analysed.Results revealed that soil physical and chemical properties significantly improved except for soil texture and EC under both species,CEC under A.leiocarpus,and soil p H under S.kunthianum,all the studied soils were improved under both species canopy as compared with canopy gap.SMC,TN,AP,and AK under canopy of these trees were respectively 24.1%,11.1%,55.0%,and 9.3% higher than those soils under control.The two parkland agroforestry species significantly enhanced soil fertility near the canopy of topsoil through improving soil physical and chemical properties.These two species were recommended in the drylands with similar agro-ecological systems.
基金supported by the Science and Technology Department of Zhejiang Province(Grant No.2021C02023).
文摘Soil texture is one of the most important soil characteristics that affect soil properties.Rapid acquisition of soil texture information is of great significance for accurate farmland management.Traditional soil texture analysis methods are relatively complicated and cannot meet the requirements of temporal and spatial resolution.This research introduced a self-developed vehicle-mounted in-situ soil texture detection system,which can predict the type of soil texture and the particle composition of the texture,and obtain real-time data during the measurement process without preprocessing the soil samples.The detection system is mainly composed of a conductivity measuring device,a camera,an auxiliary mechanical structure,and a control system.The soil electrical conductivity(ECa)and the texture features extracted from the surface image were input into the embedded model to realize real-time texture analysis.In order to find the best model suitable for the detection system,measurements were carried out in three test fields in Northeast and North China to compare the performance of different models applied to the detection system.The results showed that for soil texture classification,ExtraTrees performed best,with Precision,Recall,and F1 all being 0.82.For particle content of soil texture prediction,the R2 of ExtraTrees was 0.77,and RMSE and MAPE were 74.72 and 39.58.It was observed that ECa,Moment of inertia,and Entropy had larger weights in the drawn model influence weight map,and they are the main contributors to predicting soil texture.These results showed the potential of the vehicle-mounted in-situ soil texture detection system,which can provide a basis for fast,cost-effective,and efficient soil texture analysis.
基金Supported by the National Natural Science Foundation of China(41171384,41271414and 41301529)
文摘[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events. [Method] Three chronosequences were selected for paired comparisons. Soil samples were collected at six depths with a 10 cm increment. Analysis of variance with general linear model and regression was performed for statistical analysis. [Result] In seasonally frozen soils where fragmentation of macroaggregates was stimulated, soil organic carbon level was positively associated with clay + silt proportion due to a wider textural range, better than sole clay content. Exponential function better fitted the experimental data to present progressively increased effectiveness of clay + silt content in maintaining carbon. Clay content explained 12%-41% and 14%-43% of variation via linear and exponential functions, respectively. Accordingly, clay + silt content explained 47%-65% and 46%-70%. [Conclusion] Texture reflected soil organic carbon occurrence as consequences of reclamation. For seasonally frozen soils with wider textural ranges, it is robust to adapt clay + silt content as dependent variable and exponential function. The generated algorithms provided an available pathway to estimate soil organic carbon losses following cultivation and to evaluate soil fertility.
文摘Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion.
文摘In recent years, selected cry genes from Bacillus thuringiensis(Bt) encoding the production of Cry proteins(Bt toxins) have been engineered into crop plants(Bt-crops). Through the cultivation of Bt crops and the application of Bt pesticides, Cry proteins could be introduced into arable soils. The interaction between the proteins and soils was analyzed in this study to investigate the affinity of Cry proteins in paddy soil ecosystems. Four Paddy soils were selected to represent different soil textures. Cry proteins were spiked in soils, and the amount of protein adsorbed was measured over 24 h. Desorption of Cry1Ab proteins from paddy soils was performed by washing with sterile Milli-Q water(H_2O_(MQ)), and subsequently extracted with an extraction buffer. The paddy soils had a strong affinity for Cry1Ab proteins. Most of the Cry1Ab proteins added(&gt; 98%) were rapidly adsorbed on the paddy soils tested. More Cry1Ab proteins were adsorbed on non-sterile soils than on sterile soils. Less than 2% of the adsorbed Cry1Ab proteins were desorbed using H2 OMQ, while a considerable proportion of the adsorbed proteins could be desorbed with the buffer, ranging from 20% to 40%.The amount of proteins desorbed increased with the increases in the initial amount of Cry1Ab proteins added to the paddy soils. The concentration of Cry1Ab proteins desorbed from the paddy soils was higher for sterile soils than non-sterile ones. Our results indicate that Bt toxins released via the cultivation of Bt crops, the application of Bt pesticides can be adsorbed on paddy soils, and soil texture could impose an impact on the adsorption capability.
基金supported by the National Environmental Protection Public Welfare projects(Nos.201409047 and 201109017)the “13th Five-Year Plan” National Key Research and Development Program of China(No.2016YFC0501108)+1 种基金the Fundamental Research Funds for the Central Universities(No.2016QH02)Beijing Natural Science Foundation(No.8152025)
文摘Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons(VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures(silty,clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform(TCM) and trichloroethylene(TCE). Mechanical soil aeration was effective for remediating VCHs(removal efficiency 〉 98%). The volatilization process was described by an exponential kinetic function.In the early stage of treatment(0–7 hr), rapid contaminant volatilization followed a pseudofirst order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8 hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner.