The concentrations of polycyclic aromatic hydrocarbons(PAHs),their sources and toxic equivalent(TEQ)in soil,suspended matter and bottom sediments in the Fatala River Basin ecosystem were obtained for the fi rst time t...The concentrations of polycyclic aromatic hydrocarbons(PAHs),their sources and toxic equivalent(TEQ)in soil,suspended matter and bottom sediments in the Fatala River Basin ecosystem were obtained for the fi rst time to our knowledge.Determination of 14 PAHs(ΣPAHs)was carried out using high-performance liquid chromatography.TheΣPAH content in soil ranged from 13 to 50,920(Me=820)ng/g.The composition of PAHs(high proportion of low-molecular-weight compounds and values of individual PAHs ratios)refl ected the signifi cant oil pollution of soil.Contaminated soil was localated in the central part of the Fatala River Basin.The median benzo(a)pyrene toxic equivalent of soil at the study site was 1.08(range,0.05 to 53.16)ngTEQ/g,showing generally low soil toxicity.TheΣPAH content in suspended matter was in the range of 33 to 1316(Me=309)ng/L.TheΣPAH content in bottom sediments ranged from 36 to 6943(Me=478)ng/L,corresponding to clean and moderately contaminated sediments.TheΣPAH content in bottom sediments depended on the anthropogenic impact on the Fatala River Basin territory and the bottom sediment features.Bottom sediments and suspended matter had a low toxic equivalent.展开更多
The objective of this study is to assess the level of metal contamination of sediments and agricultural soils in the Ity-Floleu zone. The concentrations of trace elements (Fe, Mn, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) we...The objective of this study is to assess the level of metal contamination of sediments and agricultural soils in the Ity-Floleu zone. The concentrations of trace elements (Fe, Mn, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were measured in different seasons over two successive years. The sediment pollution index made it possible to note that the sediments and agricultural soils of the various stations studied are highly polluted in all seasons. The calculation of the geoaccumulation index indicates that surface water sediments most often experience extreme or moderate pollution in As, Cd, Cu, Hg and Zn in the dry or rainy season except in Pb in some cases. We observed that the sediments of the Cavally river present a serious pollution due to extreme anthropic activities carried out along the river. Over the entire region, the results of the potential ecological risk index (RI) indicate that all the sediments and agricultural soils analysed present a moderate ecological risk in terms of Pb and Zn in certain cases and an ecological risk is observed low bound to other metals in all seasons. This metallic pollution generated by human activities in this region can have consequences for the environment and biodiversity.展开更多
Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant-and animal-based biomass under oxygen-limited conditions.Recently, there has been an increasing interest in ...Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant-and animal-based biomass under oxygen-limited conditions.Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications.Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects.But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment.展开更多
Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the...Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.展开更多
Waterlogged soils and submerged sediments in wetlands and agricultural lands used for rice paddies and aquaculture have anaerobic conditions that slow and prevent the photo and microbial degradation of dioxin TCDD (2,...Waterlogged soils and submerged sediments in wetlands and agricultural lands used for rice paddies and aquaculture have anaerobic conditions that slow and prevent the photo and microbial degradation of dioxin TCDD (2,3,7,8-tetracholorodibenzo-p-dioxin), enabling it to persist in environments for long periods. Over 1.6 million ha of land in southern Vietnam were sprayed with 2,4,5-T herbicides (e.g. Agent Orange) contaminated with dioxin TCDD during the Vietnam War (1961-1971);45% of these ha received four or more spray flight missions. Dioxins are endocrine disrupters and may induce cardiovascular disease, growth, and developmental defects, diabetes, hormonal dysfunctions and disruptions, certain cancers, and chloracne. Outpatient screening clinic 2020 data on Vietnamese children suspected of congenital heart disease (CHD) showed the childhood CHD prevalence rate in Vietnam of 13.356/1000, significantly elevated compared to the Asian CHD prevalence rate of 3.531/1000. CHD prevalence rate differences between North Vietnam (2.541/1000) and south of the 17<sup>th</sup> parallel (10.809/1000) were significant. Vietnamese farmers, especially pregnant women whose occupations involve daily contact with soil and sediments where dioxin TCDD persists in the environment may be at risk of dioxin accumulation from dermal exposure and bioaccumulation via diet. There is an urgent need for funded longitudinal genetic and clinical studies to assess CHD and other organ system childhood malformations due to in utero TCDD exposure. We recommend an integrated research design involving 1) site-specific locations that received high volumes and multiple spray loads of herbicides during the Vietnam War;2) soil sampling of submerged and waterlogged soils and sediments where TCDD may not have degraded;3) production areas of agriculture, fisheries, and other aquatic products;4) risk assessment dioxin levels in foods where TCDD is likely to bioaccumulate;5) child-bearing age and pregnant women with potentially high sensitivity to long-term low dose exposure, and 6) men and women in occupations that are in daily contact with contaminated soil and sediments as part of their job routines.展开更多
137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak depo...137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak deposition in 1963.137 Cs fallout was strongly and rapidly adsorbed by soil particles when it deposited on the ground mostly with precipitation.Its following movements will associate with the adsorbed particles.137 Cs tracing technique has been widely used in soil erosion and sedimentation studies since 1980s.This paper introduces the basis of the technique and shows several case studies of assessment of soil erosion rates,investigation of sediment sources and dating of reservoir deposits by using the technique in the Loess Plateau and the Upper Yangtze River Basin.展开更多
The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new eros...The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.展开更多
Quantitative paleotemperature records are vital not only for verifying and improving the accuracy of climate model simulations, but also for estimating the amplitude of temperature variability under global warming sce...Quantitative paleotemperature records are vital not only for verifying and improving the accuracy of climate model simulations, but also for estimating the amplitude of temperature variability under global warming scenarios. The Tibetan Plateau(TP) affects atmospheric circulation patterns due to its unique geographical location and high elevation, and studies of the mechanisms of climate change on the TP are potentially extremely valuable for understanding the relationship of the region with the global climate system. With the development of biomarker-based proxies, it is possible to use lake sediments to quantitatively reconstruct past temperature variability. The source of Glycerol Dialkyl Glycerol Tetraethers(GDGTs) in lake sediments is complex, and their distribution is controlled by both climatic and environmental factors. In this work, we sampled the surface sediments of 27 lakes on the TP and in addition obtained surface soil samples from six of the lake catchments. We analyzed the factors that influence GDGT distribution in the lake sediments, and established quantitative relationship between GDGTs and Mean Annual Air Temperature(MAAT). Our principal findings are as follows: the majority of GDGTs in the lake sediments are b GDGTs, followed by crenarchaeol and GDGT-0. In most of the lakes there were no significant differences between the GDGT distribution within the lake sediments and the soils in the same catchment, which indicates that the contribution of terrestrial material is important. i GDGTs in lake sediments are mainly influenced by water chemistry parameters(p H and salinity), and that in small lakes on the TP, TEX_(86) may act as a potential proxy for lake p H; however, in contrast b GDGTs in the lake sediments are mainly controlled by climatic factors. Based on the GDGT distribution in the lake sediments, we used proxies(MBT, CBT) and the fractional abundance of b GDGTs(f_(abun)) to establish calibrations between GDGTs and MAAT, respectively, which potentially provide the basis for paleoclimatic reconstruction on the TP.展开更多
Environmental crises,land degradation,declining factor productivity,and farm profitability questioned the sustainability of linear economy-based existing agricultural production model.Hence,there is a dire need to des...Environmental crises,land degradation,declining factor productivity,and farm profitability questioned the sustainability of linear economy-based existing agricultural production model.Hence,there is a dire need to design and develop circular economy-based production systems to meet the twin objectives of environmental sustainability and food security.Therefore,the productive capacity,natural resource conserving ability,and biomass recycling potential of four intensified maize-based systems viz.maize(Zea mays)+sweet potato(Ipomoea batatas)-wheat,maize+colocasia(Colocasia esculenta)-wheat,maize+turmeric(Curcuma longa),and maize+ginger(Zingiber officinale)were tested consecutively for three years(2020,2021 and 22)in a fixed plot manner at Dehradun region of the Indian Himalaya against the existing maize-wheat systems.The result showed that the maize+sweet potato-wheat system significantly reduced runoff loss(166.3 mm)over the maize-wheat system.The highest through fall(68.12%)and the lowest stem flow(23.54%)were recorded with sole maize.On the contrary,the maize+sweet potato system has the highest stem flow(36.15%)and the lowest through fall.Similarly,the maize+sweet potato system had 5.6 times lesser soil erosion and 0.77 t ha^(-1)higher maize pro-ductivity over the maize-wheat system.Furthermore,the maize+sweet potato system recorded significantly higher soil moisture(19.3%),infiltration rate(0.95 cm h^(-1)),and organic carbon(0.78%)over the rest of the systems.The maize+sweet potato system also recycled the highest nitrogen(299.2 kg ha^(-1)),phosphorus,(31.0 kg ha^(-1)),and potassium(276.2 kg ha^(-1))into the soil system.Hence,it can be inferred that concurrent cultivation of sweet potato,with maize,is a soil-supportive,resource-conserving,and productive production model and can be recommended for achieving the circular economy targets in the Indian Himalayas.展开更多
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red so...Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH4+-N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.展开更多
基金support of the Project of the Russian Federation represented by the Ministry of Science and Higher Education of the Russian Federation:assistance in the form of grants in accordance with paragraph 4 of article 78.1 of the Budget Code of the Russian Federation(agreement No.075-15-2023-592 on subject No.13.2251.21.0216)CEREMAC-G own research fund and a Support special fi nancier of the Ministry of Higher Education,Scientifi c Research and Innovation(MESRSI)of the Republic of Guinea.
文摘The concentrations of polycyclic aromatic hydrocarbons(PAHs),their sources and toxic equivalent(TEQ)in soil,suspended matter and bottom sediments in the Fatala River Basin ecosystem were obtained for the fi rst time to our knowledge.Determination of 14 PAHs(ΣPAHs)was carried out using high-performance liquid chromatography.TheΣPAH content in soil ranged from 13 to 50,920(Me=820)ng/g.The composition of PAHs(high proportion of low-molecular-weight compounds and values of individual PAHs ratios)refl ected the signifi cant oil pollution of soil.Contaminated soil was localated in the central part of the Fatala River Basin.The median benzo(a)pyrene toxic equivalent of soil at the study site was 1.08(range,0.05 to 53.16)ngTEQ/g,showing generally low soil toxicity.TheΣPAH content in suspended matter was in the range of 33 to 1316(Me=309)ng/L.TheΣPAH content in bottom sediments ranged from 36 to 6943(Me=478)ng/L,corresponding to clean and moderately contaminated sediments.TheΣPAH content in bottom sediments depended on the anthropogenic impact on the Fatala River Basin territory and the bottom sediment features.Bottom sediments and suspended matter had a low toxic equivalent.
文摘The objective of this study is to assess the level of metal contamination of sediments and agricultural soils in the Ity-Floleu zone. The concentrations of trace elements (Fe, Mn, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were measured in different seasons over two successive years. The sediment pollution index made it possible to note that the sediments and agricultural soils of the various stations studied are highly polluted in all seasons. The calculation of the geoaccumulation index indicates that surface water sediments most often experience extreme or moderate pollution in As, Cd, Cu, Hg and Zn in the dry or rainy season except in Pb in some cases. We observed that the sediments of the Cavally river present a serious pollution due to extreme anthropic activities carried out along the river. Over the entire region, the results of the potential ecological risk index (RI) indicate that all the sediments and agricultural soils analysed present a moderate ecological risk in terms of Pb and Zn in certain cases and an ecological risk is observed low bound to other metals in all seasons. This metallic pollution generated by human activities in this region can have consequences for the environment and biodiversity.
基金supported by the Science and Technology Project of Beijing (No. D161100000216001)the Fundamental Research Funds for the Central University (No. 2014KJJCB23)the Youth Scholars Program of Beijing Normal University (No. 2014NT32)
文摘Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant-and animal-based biomass under oxygen-limited conditions.Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications.Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects.But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment.
基金Project(51274251)supported by the National Natural Science Foundation of China
文摘Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine.
文摘Waterlogged soils and submerged sediments in wetlands and agricultural lands used for rice paddies and aquaculture have anaerobic conditions that slow and prevent the photo and microbial degradation of dioxin TCDD (2,3,7,8-tetracholorodibenzo-p-dioxin), enabling it to persist in environments for long periods. Over 1.6 million ha of land in southern Vietnam were sprayed with 2,4,5-T herbicides (e.g. Agent Orange) contaminated with dioxin TCDD during the Vietnam War (1961-1971);45% of these ha received four or more spray flight missions. Dioxins are endocrine disrupters and may induce cardiovascular disease, growth, and developmental defects, diabetes, hormonal dysfunctions and disruptions, certain cancers, and chloracne. Outpatient screening clinic 2020 data on Vietnamese children suspected of congenital heart disease (CHD) showed the childhood CHD prevalence rate in Vietnam of 13.356/1000, significantly elevated compared to the Asian CHD prevalence rate of 3.531/1000. CHD prevalence rate differences between North Vietnam (2.541/1000) and south of the 17<sup>th</sup> parallel (10.809/1000) were significant. Vietnamese farmers, especially pregnant women whose occupations involve daily contact with soil and sediments where dioxin TCDD persists in the environment may be at risk of dioxin accumulation from dermal exposure and bioaccumulation via diet. There is an urgent need for funded longitudinal genetic and clinical studies to assess CHD and other organ system childhood malformations due to in utero TCDD exposure. We recommend an integrated research design involving 1) site-specific locations that received high volumes and multiple spray loads of herbicides during the Vietnam War;2) soil sampling of submerged and waterlogged soils and sediments where TCDD may not have degraded;3) production areas of agriculture, fisheries, and other aquatic products;4) risk assessment dioxin levels in foods where TCDD is likely to bioaccumulate;5) child-bearing age and pregnant women with potentially high sensitivity to long-term low dose exposure, and 6) men and women in occupations that are in daily contact with contaminated soil and sediments as part of their job routines.
基金supported by National Natural Science Foundation of China (Grant No. 40971169,41101259)Ministry of Environmental Protectionof China (Grant No. 2009ZX07104-002-06)State Key Laboratory of Environmental Geochemistry (Grant No. SKLEG9008)
文摘137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak deposition in 1963.137 Cs fallout was strongly and rapidly adsorbed by soil particles when it deposited on the ground mostly with precipitation.Its following movements will associate with the adsorbed particles.137 Cs tracing technique has been widely used in soil erosion and sedimentation studies since 1980s.This paper introduces the basis of the technique and shows several case studies of assessment of soil erosion rates,investigation of sediment sources and dating of reservoir deposits by using the technique in the Loess Plateau and the Upper Yangtze River Basin.
基金funded by the National Key Research and Development Program of China (2017YFC0504505)the National Key Technology Support Program of China during the Twelfth Five-year Plan Period (2013BAC05B02, 2013BAC05B04)
文摘The Pisha sandstone-coverd area is among the regions that suffer from the most severe water loss and soil erosion in China and is the main source of coarse sand for the Yellow River. This study demonstrated a new erosion control method using W-OH solution, a type of hydrophilic polyurethane, to prevent the Pisha sandstone from water erosion. We evaluated the comprehensive effects of W-OH on water erosion resistance and vegetation-growth promotion through simulated scouring tests and field demonstrations on the Ordos Plateau of China. The results of simulated scouring tests show that the water erosion resistance of W-OH treated area was excellent and the cumulative sediment yield reduction reached more than 99%. In the field demonstrations, the vegetation coverage reached approximately 95% in the consolidation-green area, and there was almost no shallow trenches on the entire slope in the treated area. In comparison, the control area experienced severe erosion with deep erosion gullies appeared on the slope and the vegetation coverage was less than 30%. This study illustrated that W-OH treatment can protect the Pisha sandstone from erosion and provide the vegetation seeds a chance to grow. Once the vegetation matured, the effects of consolidation-growth mutual promotion can efficiently and effectively improve the water erosion resistance and ecological restoration.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41072120 & 41321061)
文摘Quantitative paleotemperature records are vital not only for verifying and improving the accuracy of climate model simulations, but also for estimating the amplitude of temperature variability under global warming scenarios. The Tibetan Plateau(TP) affects atmospheric circulation patterns due to its unique geographical location and high elevation, and studies of the mechanisms of climate change on the TP are potentially extremely valuable for understanding the relationship of the region with the global climate system. With the development of biomarker-based proxies, it is possible to use lake sediments to quantitatively reconstruct past temperature variability. The source of Glycerol Dialkyl Glycerol Tetraethers(GDGTs) in lake sediments is complex, and their distribution is controlled by both climatic and environmental factors. In this work, we sampled the surface sediments of 27 lakes on the TP and in addition obtained surface soil samples from six of the lake catchments. We analyzed the factors that influence GDGT distribution in the lake sediments, and established quantitative relationship between GDGTs and Mean Annual Air Temperature(MAAT). Our principal findings are as follows: the majority of GDGTs in the lake sediments are b GDGTs, followed by crenarchaeol and GDGT-0. In most of the lakes there were no significant differences between the GDGT distribution within the lake sediments and the soils in the same catchment, which indicates that the contribution of terrestrial material is important. i GDGTs in lake sediments are mainly influenced by water chemistry parameters(p H and salinity), and that in small lakes on the TP, TEX_(86) may act as a potential proxy for lake p H; however, in contrast b GDGTs in the lake sediments are mainly controlled by climatic factors. Based on the GDGT distribution in the lake sediments, we used proxies(MBT, CBT) and the fractional abundance of b GDGTs(f_(abun)) to establish calibrations between GDGTs and MAAT, respectively, which potentially provide the basis for paleoclimatic reconstruction on the TP.
文摘Environmental crises,land degradation,declining factor productivity,and farm profitability questioned the sustainability of linear economy-based existing agricultural production model.Hence,there is a dire need to design and develop circular economy-based production systems to meet the twin objectives of environmental sustainability and food security.Therefore,the productive capacity,natural resource conserving ability,and biomass recycling potential of four intensified maize-based systems viz.maize(Zea mays)+sweet potato(Ipomoea batatas)-wheat,maize+colocasia(Colocasia esculenta)-wheat,maize+turmeric(Curcuma longa),and maize+ginger(Zingiber officinale)were tested consecutively for three years(2020,2021 and 22)in a fixed plot manner at Dehradun region of the Indian Himalaya against the existing maize-wheat systems.The result showed that the maize+sweet potato-wheat system significantly reduced runoff loss(166.3 mm)over the maize-wheat system.The highest through fall(68.12%)and the lowest stem flow(23.54%)were recorded with sole maize.On the contrary,the maize+sweet potato system has the highest stem flow(36.15%)and the lowest through fall.Similarly,the maize+sweet potato system had 5.6 times lesser soil erosion and 0.77 t ha^(-1)higher maize pro-ductivity over the maize-wheat system.Furthermore,the maize+sweet potato system recorded significantly higher soil moisture(19.3%),infiltration rate(0.95 cm h^(-1)),and organic carbon(0.78%)over the rest of the systems.The maize+sweet potato system also recycled the highest nitrogen(299.2 kg ha^(-1)),phosphorus,(31.0 kg ha^(-1)),and potassium(276.2 kg ha^(-1))into the soil system.Hence,it can be inferred that concurrent cultivation of sweet potato,with maize,is a soil-supportive,resource-conserving,and productive production model and can be recommended for achieving the circular economy targets in the Indian Himalayas.
文摘Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH4+-N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.