Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile drive...Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.展开更多
为了研究灌注桩套管振动贯入引起的施工效应,通过物理模型试验,对套管贯入过程及贯入过程中孔隙水压力、水平向挤土应力和土塞闭塞程度的变化规律进行了分析;建立了能够有效模拟灌注桩套管振动贯入过程的数值分析模型,并对物理模型试验...为了研究灌注桩套管振动贯入引起的施工效应,通过物理模型试验,对套管贯入过程及贯入过程中孔隙水压力、水平向挤土应力和土塞闭塞程度的变化规律进行了分析;建立了能够有效模拟灌注桩套管振动贯入过程的数值分析模型,并对物理模型试验进行大变形数值模拟及对比.研究结果表明:灌注桩套管贯入深度每增加0.2 m,超孔隙水压力和水平向挤土应力分别增加1 k Pa和8 k Pa,但挤土效应的影响范围主要集中在距离套管中心半径为6倍管径的范围内;由于套管壁与土体的反复剪切,产生不完全闭塞的土塞,套管端部形成环形土拱,此段土塞承担了80%的内摩阻力;随着套管直径增大,土塞闭塞程度由不完全闭塞过渡到完全非闭塞状态;套管贯入相同深度时,饱和砂土地基中土塞高度为干砂地基中土塞高度的1.2倍.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.50309009)the National High Technology Research and Development Program of China(863 Program,Grant No.2004AA616100)
文摘Long steel piles with large diameters have been more widely used in the field of ocean engineering. Owing to the pile with a large diameter, soil plug development during pile driving has great influences on pile driveability and bearing capacity. The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service. This paper addresses the former aspect. A numerical procedure for soil plug effect prediction and pile driveabihty analysis is proposed and described. By taking into consideration of the pile dimension effect on side and tip resistance, this approach introduces a dimensional coefficient to the conventional static eqnihbrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction. At the same time, this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soil plug and pile inner wall. The proposed approach has been applied in practical engineering analyses. Results show that the calculated plug effect and pile driveabihty based on the proposed approach agree well with the observed data.
文摘为了研究灌注桩套管振动贯入引起的施工效应,通过物理模型试验,对套管贯入过程及贯入过程中孔隙水压力、水平向挤土应力和土塞闭塞程度的变化规律进行了分析;建立了能够有效模拟灌注桩套管振动贯入过程的数值分析模型,并对物理模型试验进行大变形数值模拟及对比.研究结果表明:灌注桩套管贯入深度每增加0.2 m,超孔隙水压力和水平向挤土应力分别增加1 k Pa和8 k Pa,但挤土效应的影响范围主要集中在距离套管中心半径为6倍管径的范围内;由于套管壁与土体的反复剪切,产生不完全闭塞的土塞,套管端部形成环形土拱,此段土塞承担了80%的内摩阻力;随着套管直径增大,土塞闭塞程度由不完全闭塞过渡到完全非闭塞状态;套管贯入相同深度时,饱和砂土地基中土塞高度为干砂地基中土塞高度的1.2倍.