In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change...In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change between water and ice, is shown explicitly in both the energy and mass balance equations. The models must be solved by a numerical method with an iterative process, and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step. Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat, a small error in the rate term estimation will introduce greater error in the energy balance, which will amplify the error in the temperature calculation and in turn, cause problems for the numerical solution convergence. In this work, in order to first reduce the trouble, the methodology of the variable transformation is applied to a simplified frozen soil model used currently, which leads to new frozen soil scheme used in this work. In the new scheme, the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature, volumetric soil moisture and ice content used in many current models. By doing so, the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided. Secondly, in order to solve this new scheme more functionally, the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed. In order to evaluate the new scheme of the frozen soil model and its relevant algorithm, a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets. The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of variables and their magnitude values, and the new scheme, together with the algorithm, is more efficient and saves more computer time.展开更多
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculat...The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger.展开更多
When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil...When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism.展开更多
Riverbed modeled rockfill material from Noa Dehing dam project, Arunachal Pradesh, India and blasted quarried modeled rockfill material from Kol dam project, Himachal Pradesh, India were considered for this research. ...Riverbed modeled rockfill material from Noa Dehing dam project, Arunachal Pradesh, India and blasted quarried modeled rockfill material from Kol dam project, Himachal Pradesh, India were considered for this research. Riverbed rockfill material is rounded to sub-rounded and quarried rockfill material is angular to sub-angular in shape. Prototype rockfill materials were modeled into maximum particle size (dmax) of 4.75 mm, 10 mm, 19 mm, 25 mm, 5O mm and 80 mm for testing in the laboratory. Consolidated drained triaxial tests were conducted on modeled rockfill materials with a specimen size of 381 mm in diameter and 813 mm in height to study the stress-strain-volume change behavior for both rockfill materials. Index properties, i.e. uncompacted void content (UVC) and uniaxial compressive strength (UCS), were determined for both rockfill materials in association with material parameters. An elasto- plastic hardening soil (HS) constitutive model was used to predict the behavior of modeled rockfill materials. Comparing the predicted and observed stress-strain-volume change behavior, it is found that both observed and predicted behaviors match closely. The procedures were developed to predict the shear strength and elastic parameters of rockfill materials using the index properties, i.e. UCS, UVC and relative density (RD), and predictions were made satisfactorily. Comparing the predicted and experi- mentally determined shear strengths and elastic parameters, it is observed that both values match closely. Then these procedures were used to predict the elastic and shear strength parameters of large- size prototype rockfill materials. Correlations were also developed between index properties and ma- terial strength parameters (dilatancy angle, ~, and initial void ratio, einit, required for HS model) of modeled rockfill materials and the same correlations were used to predict the strength parameters for the prototype rockfill materials. Using the predicted material parameters, the stress-strain-volume change behavior of prototype rockfill material was predicted using elastoplastic HS constitutive model. The advantage of the proposed methods is that only index properties, i.e. UCS, UVC, RD, modulus of elasticity of intact rock, Eir, and Poisson's ratio of intact rock, Vir, are required to determine the angle of shearing resistance, Ф, modulus of elasticity, E50^ref and Poisson's ratio, , of rockfill materials, and there is E50&ref no need of triaxial testing. It is believed that the proposed methods are more realistic, economical, and can be used where large-size triaxial testing facilities are not available.展开更多
Terrestrial invasive alien weed plants are known to infest cultivated land, potentially releasing allelochemicals into the rhizosphere during decomposition, negatively impacting crop growth. This study aimed to evalua...Terrestrial invasive alien weed plants are known to infest cultivated land, potentially releasing allelochemicals into the rhizosphere during decomposition, negatively impacting crop growth. This study aimed to evaluate: (1) the allelopathic activity of five invasive weed species (Ageratum conyzoides, Bidens pilosa, Cecropia peltata, Tithonia diversifolia, and Chromolaena odorata) on Lactuca sativa and Phaseolus vulgaris growth;and (2) the effects of A. conyzoides rhizospheric soil on P. vulgaris seed germination. Bioassays of aqueous and leachate extracts were prepared from fresh leaves of the invasive species at concentrations of 0%, 25%, 50%, 75%, and 100% to assess allelopathic effects on L. sativa and P. vulgaris seed germination. Additionally, rhizospheric soil from A. conyzoides stands was collected, processed, and applied at varied weights (0.5 - 7 kg) to P. vulgaris seeds, with germination observed over nine days. Polynomial regression analysis was applied to model the data. High-concentration extracts (75% and 100%) significantly inhibited germination, root, and shoot growth in both L. sativa and P. vulgaris (P 2 − 80.294922x3 + 41.541115x4 − 11.747532x5 + 1.8501702x6 − 0.1519795x7 + 0.0050631x8. Allelopathic effects were concentration-dependent, with roots more sensitive than shoots to the invasive extracts. L. sativa was the most susceptible, while P. vulgaris showed greater tolerance. Modelling the allelopathic impact of A. conyzoides rhizospheric soil offers valuable insight into the allelochemical dosage necessary to affect seed germination, informing potential agricultural management strategies for invasive plant control.展开更多
Over the past six decades,the implementation of soil and water conservation measures has significantly reduced soil erosion and sediment yield on the Loess Plateau,China.However,while the overall reduction is well-doc...Over the past six decades,the implementation of soil and water conservation measures has significantly reduced soil erosion and sediment yield on the Loess Plateau,China.However,while the overall reduction is well-documented,the dynamic interplay between soil erosion potential and sediment connectivity,specifically how they spatially covary under land use/cover changes,remains insufficiently understood.To address this gap,this study established a model framework by integrating the revised universal soil loss equation(RUSLE),index of connectivity(IC),and sediment delivery ratio(SDR)to evaluate the spatio-temporal variations in soil erosion and sediment yield in the Hantaichuan Watershed,northern Loess Plateau,China,from 1995 to 2020 and to estimate the effects of land use/cover changes and check dam construction on sediment yield.The results revealed that the soil erosion in the Hantaichuan Watershed decreased by 43.90% from 1995 to 2020 and the sediment yield decreased by 69.28% under the combination of land use/cover changes and check dam construction.The IC and soil erosion(IC-SE)map revealed both the coupling and decoupling covariation relationships between sediment connectivity and soil erosion.By 2020,areas with high connectivity and high erosion(I-E)covered only 18.67% of the watershed,while contributed more than 40.00% to the total erosion.The I-E zones were mainly located in the central part of the watershed where aeolian sands derived from the Hobq Desert are concentrated and were identified as critical areas for soil and water conservation.This study provides support for priority management of watershed conservation measures as well as a valuable reference for future studies.展开更多
The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distri...The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas.展开更多
Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the veget...Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFvc) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFvc range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using CLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to bemore reliable than the C factor based on the fractional vegetation cover.展开更多
It is very important to develop a universal soil model with higher simplicity and more accuracy, which can be widely applied to very general cases such as wet or dry soil, frozen or unfrozen soil and homogeneous or he...It is very important to develop a universal soil model with higher simplicity and more accuracy, which can be widely applied to very general cases such as wet or dry soil, frozen or unfrozen soil and homogeneous or heterogeneous soil. Firstly in this study, based on analysis of both magnitude order and the numerical simulation results, the universal and simplified soil model (USSM) coupling heat and mass transport processes is developed. Secondly, in order to avoid the greater uncertainty caused by the phase change term in numerical iteration process for the model solution obtaining, new version of the universal simplified soil model (NUSSM) is further derived through variables transformation, and accordingly a more efficient numerical scheme for the new version is designed well. The simulation results from the NUSSM agree with the results from more complicated and accurate soil model very well, also reasonably reproduce the observed data under widely real conditions. The new version model, because of its simplicity, will match for the development of land surface model.展开更多
Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production...Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.展开更多
With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of...With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.展开更多
Soil organic carbon (SOC) is one of the centre issues related to not only soil fertility but also environmental safety. Assessing SOC dynamics in croplands has been a challenge in China for long due to the lack of a...Soil organic carbon (SOC) is one of the centre issues related to not only soil fertility but also environmental safety. Assessing SOC dynamics in croplands has been a challenge in China for long due to the lack of appropriate methodologies and data sources. As an alternative approach for studying SOC dynamics, process-based models are adopted to meet the needs. In this paper, a process-based model, DeNitrification-DeComposition (DNDC), was applied to quantify the SOC storage and the spatial distribution in croplands of China in 2003, with the support of a newly compiled county-level soil/ climate/land use database. The simulated results showed that the total SOC storage in the top layer (0-30 cm) of the 1.18 × 10^8 ha croplands of China is 4.7-5.2 Pg C in 2003 with an average value of 4.95 Pg C. The SOC storage in the northeastern provinces (1.3 Pg C) accounts for about 1/4 of the whole national totals due to their dominantly fertile soils with high organic matter content. SOC density ranges from 3.9 to 4.4 kg C m 2, with an average of 4.2 kg C m^-2, a level is much lower than the world average level. The model results also indicated that high rates of SOC losses occurred in the croplands with the most common cropping patterns in China as like single soybean 〉 maize 〉 paddy 〉 cotton 〉 winter wheat and corn rotation. The results reported in this paper showed that there was still a great potential for improving SOC status in most croplands of China by adopting proper farming practices and land-use pattern. Therefore, long-term policy to protect SOC is urgently needed.展开更多
The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was establ...The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.展开更多
The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inver...The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that(1) the wetting front in coarse texture soils transports faster than in fine texture soils;(2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate;(3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time;(4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research.展开更多
By taking the frozen soil as a particle-reinforced composite material which consists of clay soil (i.e., the matrix) and ice particles, a micromechanical constitutive model is established to describe the dynamic com...By taking the frozen soil as a particle-reinforced composite material which consists of clay soil (i.e., the matrix) and ice particles, a micromechanical constitutive model is established to describe the dynamic compressive deformation of frozen soil. The proposed model is constructed by referring to the debonding damage theory of composite materials, and addresses the effects of strain rate and temperature on the dynamic compressive deformation of frozen soil. The proposed model is verified through comparison of the predictions with the corresponding dynamic experimental data of frozen soil obtained from the split Hopkinson pressure bar (SHPB) tests at different high strain rates and temperatures. It is shown that the predictions agree well with the experimental results.展开更多
Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.He...Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.Here we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas.An automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region,China.Soil pH,soil temperature at 0–5 cm(Ts),soil volumetric water content at 0–5 cm(θs)and air temperature at10 cm above the soil surface(Tas)were simultaneously analyzed.Results highlight reduced sensitivity of Fc to Ts and good prediction of Fc by the model Fc=R10Q10(Tas–10)/10+r7q7(pH–7)+λTas+μθs+e which represents Fc as a sum of biotic and abiotic components.This presents an approximate method to quantify the contribution of soil abiotic CO2 exchange to Fc in alkaline soils of arid areas.展开更多
Soil erosion is an important environmental threat in China.However,quantitative estimates of soil erosion in China have rarely been reported in the literature.In this study,soil loss potential in China was estimated b...Soil erosion is an important environmental threat in China.However,quantitative estimates of soil erosion in China have rarely been reported in the literature.In this study,soil loss potential in China was estimated by integrating satellite images,field samples,and ground observations based on the Revised Universal Soil Loss Equation(RUSLE).The rainfall erosivity factor was estimated from merged rainfall data using Collocated CoKriging(ColCOK)and downscaled by geographically weighted regression(GWR).The Random Forest(RF)regression approach was used as a tool for understanding and predicting the relationship between the soil erodibility factor and a set of environment factors.Our results show that the average erosion rate in China is 1.44 t ha^(–1) yr^(–1).More than 60%of the territory in China is influenced by soil erosion limitedly,with an average potential erosion rate less than 0.1 t ha^(–1) yr^(–1).Other unused land and other forested woodlands showed the highest erosion risk.Our estimates are comparable to those of runoff plot studies.Our results provide a useful tool for soil loss assessments and ecological environment protections.展开更多
The existing^(210)Pb_(ex)mass balance models for the assessment of cultivated soil erosion are based on an assumption that^(210)Pb_(ex)is quite evenly mixed within the plough layer.However,the amount of^(210)Pb_(ex)di...The existing^(210)Pb_(ex)mass balance models for the assessment of cultivated soil erosion are based on an assumption that^(210)Pb_(ex)is quite evenly mixed within the plough layer.However,the amount of^(210)Pb_(ex)distributed in the soils below the plough depth,like a downward tail in the lower part of the^(210)Pb_(ex)profile,has been largely ignored.In fact,after the initial cultivation of undisturbed soils,^(210)Pb_(ex)will diffuse downward from plough layer to the plough pan layer due to the concentration gradient.Assuming^(210)Pb_(ex)inventory is constant,the depth distribution in the two layers of the cultivated soils will achieve a steady state after continuous cultivation for 10.37 years,when^(210)Pb_(ex)is evenly distributed in the soils of the plough layer with an exponential concentration decline with depth in the soils of the plough pan layer,and the^(210)Pb_(ex)concentration at any depth will be invariable with time.The work reported in this paper attempts to explain the formation of the^(210)Pb_(ex)tail in the soil profile below the plough depth by theoretical derivation of the^(210)Pb_(ex)depth distribution process in the two layers of the cultivated soils,propose a^(210)Pb_(ex)mass balance model considering^(210)Pb_(ex)diffusion based on the existing model,and discuss the influence of the^(210)Pb_(ex)tail to the existing model.展开更多
On the basis of analyzing the soil erosion factors in typical arid area basin, this article tries to build a model by using USLE (Universal Soil Loss Equation). The first step is to digitize the topographic map (1∶10...On the basis of analyzing the soil erosion factors in typical arid area basin, this article tries to build a model by using USLE (Universal Soil Loss Equation). The first step is to digitize the topographic map (1∶100?000) and form the DEM (Digital Elevation Model), then use them to obtain necessary data of topographic factors. The second step is to get main elements causing soil erosion through using Main Element Analyzing Program. The third step is to systematically analyze all factors of soil erosion by applying Grey Dynamic Model and Fuzzy Mathematics, and then take GIS software to draw the colored map in the way that different colors present different intensities of soil erosion. At last the regional change of soil erosion amount on the basis of the color map is analyzed.展开更多
A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil i...A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil ice content and the energy change in phase change process is considered; the original soil thermal conductivity scheme is replaced by Johanson scheme and the soil thermal and hydraulic properties is modi-fied depending on soil ice content. The comparison of original model with revised model results indicates that the frozen soil scheme can reasonably simulate the energy budget in soil column and the variation of thermal and hydraulic properties as the soil ice content changes. Soil moisture in spring is decreased because of the reduction of infiltration and increment of runoff. Consequently, the partition of heat flux and surface temperature changes correspondingly.展开更多
基金the National Natural Science Foun-dation of China under Grant Nos. 40575043 and 40605024as well as 40730952the National Basic Research Program of China under Grant No. 2009CB421405The Innovation Project of the Chinese Academy of Sci-ences (Grant No. KZCX2-YW-220)
文摘In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change between water and ice, is shown explicitly in both the energy and mass balance equations. The models must be solved by a numerical method with an iterative process, and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step. Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat, a small error in the rate term estimation will introduce greater error in the energy balance, which will amplify the error in the temperature calculation and in turn, cause problems for the numerical solution convergence. In this work, in order to first reduce the trouble, the methodology of the variable transformation is applied to a simplified frozen soil model used currently, which leads to new frozen soil scheme used in this work. In the new scheme, the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature, volumetric soil moisture and ice content used in many current models. By doing so, the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided. Secondly, in order to solve this new scheme more functionally, the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed. In order to evaluate the new scheme of the frozen soil model and its relevant algorithm, a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets. The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of variables and their magnitude values, and the new scheme, together with the algorithm, is more efficient and saves more computer time.
基金This study was financially supported by the National Natural Science Foundation of China(Grant No.51679167)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MEE032)。
文摘The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger.
基金funded by the Scholarship for Visiting Scholars of the Key Laboratory of New Technology for Construction of Cities in Mountain Areas, Chongqing University (Grant No. 0902071812102/011)the Major Project of the Provincial Science Foundation of Inner Mongolia, China (Grant No. 2012ZD0602)+1 种基金Ordos UEGE, China (Grant No. 18-8)the National Natural Science Foundation of China (Grant No. 51622803)
文摘When transparent soil technology is used to study the displacement of a slope, the internal deformation of the slope can be visualized. We studied the sliding mechanism of the soil-rock slope by using transparent soil technology and considering the influence of the rock mass Barton joint roughness coefficient, angle of the soil mass, angle of the rock mass and soil thickness factors on slope stability. We obtained the deformation characteristics of the soil and rock slope with particle image velocimetry and the laser speckle technique. The test analysis shows that the slope sliding can be divided into three parts: displacements at the top, the middle, and the bottom of the slope; the decrease in the rock mass Barton joint roughness coefficient, and the increase in soil thickness, angles of the rock mass and soil mass lead to larger sliding displacements. Furthermore, we analyzed the different angles between the rock mass and soil thickness. The test result shows that the displacement of slope increases with larger angle of the rock mass. Conclusively, all these results can help to explain the soil-rock interfacial sliding mechanism.
文摘Riverbed modeled rockfill material from Noa Dehing dam project, Arunachal Pradesh, India and blasted quarried modeled rockfill material from Kol dam project, Himachal Pradesh, India were considered for this research. Riverbed rockfill material is rounded to sub-rounded and quarried rockfill material is angular to sub-angular in shape. Prototype rockfill materials were modeled into maximum particle size (dmax) of 4.75 mm, 10 mm, 19 mm, 25 mm, 5O mm and 80 mm for testing in the laboratory. Consolidated drained triaxial tests were conducted on modeled rockfill materials with a specimen size of 381 mm in diameter and 813 mm in height to study the stress-strain-volume change behavior for both rockfill materials. Index properties, i.e. uncompacted void content (UVC) and uniaxial compressive strength (UCS), were determined for both rockfill materials in association with material parameters. An elasto- plastic hardening soil (HS) constitutive model was used to predict the behavior of modeled rockfill materials. Comparing the predicted and observed stress-strain-volume change behavior, it is found that both observed and predicted behaviors match closely. The procedures were developed to predict the shear strength and elastic parameters of rockfill materials using the index properties, i.e. UCS, UVC and relative density (RD), and predictions were made satisfactorily. Comparing the predicted and experi- mentally determined shear strengths and elastic parameters, it is observed that both values match closely. Then these procedures were used to predict the elastic and shear strength parameters of large- size prototype rockfill materials. Correlations were also developed between index properties and ma- terial strength parameters (dilatancy angle, ~, and initial void ratio, einit, required for HS model) of modeled rockfill materials and the same correlations were used to predict the strength parameters for the prototype rockfill materials. Using the predicted material parameters, the stress-strain-volume change behavior of prototype rockfill material was predicted using elastoplastic HS constitutive model. The advantage of the proposed methods is that only index properties, i.e. UCS, UVC, RD, modulus of elasticity of intact rock, Eir, and Poisson's ratio of intact rock, Vir, are required to determine the angle of shearing resistance, Ф, modulus of elasticity, E50^ref and Poisson's ratio, , of rockfill materials, and there is E50&ref no need of triaxial testing. It is believed that the proposed methods are more realistic, economical, and can be used where large-size triaxial testing facilities are not available.
文摘Terrestrial invasive alien weed plants are known to infest cultivated land, potentially releasing allelochemicals into the rhizosphere during decomposition, negatively impacting crop growth. This study aimed to evaluate: (1) the allelopathic activity of five invasive weed species (Ageratum conyzoides, Bidens pilosa, Cecropia peltata, Tithonia diversifolia, and Chromolaena odorata) on Lactuca sativa and Phaseolus vulgaris growth;and (2) the effects of A. conyzoides rhizospheric soil on P. vulgaris seed germination. Bioassays of aqueous and leachate extracts were prepared from fresh leaves of the invasive species at concentrations of 0%, 25%, 50%, 75%, and 100% to assess allelopathic effects on L. sativa and P. vulgaris seed germination. Additionally, rhizospheric soil from A. conyzoides stands was collected, processed, and applied at varied weights (0.5 - 7 kg) to P. vulgaris seeds, with germination observed over nine days. Polynomial regression analysis was applied to model the data. High-concentration extracts (75% and 100%) significantly inhibited germination, root, and shoot growth in both L. sativa and P. vulgaris (P 2 − 80.294922x3 + 41.541115x4 − 11.747532x5 + 1.8501702x6 − 0.1519795x7 + 0.0050631x8. Allelopathic effects were concentration-dependent, with roots more sensitive than shoots to the invasive extracts. L. sativa was the most susceptible, while P. vulgaris showed greater tolerance. Modelling the allelopathic impact of A. conyzoides rhizospheric soil offers valuable insight into the allelochemical dosage necessary to affect seed germination, informing potential agricultural management strategies for invasive plant control.
基金supported by the National Natural Science Foundation of China(42077076,42177323)the National Natural Science Foundation of China and Yellow River Water Science Research Joint Fund(U2243211).
文摘Over the past six decades,the implementation of soil and water conservation measures has significantly reduced soil erosion and sediment yield on the Loess Plateau,China.However,while the overall reduction is well-documented,the dynamic interplay between soil erosion potential and sediment connectivity,specifically how they spatially covary under land use/cover changes,remains insufficiently understood.To address this gap,this study established a model framework by integrating the revised universal soil loss equation(RUSLE),index of connectivity(IC),and sediment delivery ratio(SDR)to evaluate the spatio-temporal variations in soil erosion and sediment yield in the Hantaichuan Watershed,northern Loess Plateau,China,from 1995 to 2020 and to estimate the effects of land use/cover changes and check dam construction on sediment yield.The results revealed that the soil erosion in the Hantaichuan Watershed decreased by 43.90% from 1995 to 2020 and the sediment yield decreased by 69.28% under the combination of land use/cover changes and check dam construction.The IC and soil erosion(IC-SE)map revealed both the coupling and decoupling covariation relationships between sediment connectivity and soil erosion.By 2020,areas with high connectivity and high erosion(I-E)covered only 18.67% of the watershed,while contributed more than 40.00% to the total erosion.The I-E zones were mainly located in the central part of the watershed where aeolian sands derived from the Hobq Desert are concentrated and were identified as critical areas for soil and water conservation.This study provides support for priority management of watershed conservation measures as well as a valuable reference for future studies.
基金Supported by National Science and Technology Support Program in Twelfth Five-year Plan(2012BAD05B06)Special Funds for Excellent Young Scientific Talents in Guizhou[(2011)14]~~
文摘The aim was to further research soil erosion characteristics and accurately predict soil erosion amount in karst areas. Based on field surveys and research achievements available, yellow soils, which are widely distributed, were chosen as test soil samples and slope, rain intensity, vegetation coverage and bare-rock ratio were taken as soil erosion factors. Artificial rain simulation instruments (needle-type) were made use of to simulate correlation of rain intensity, vegetation coverage, and bare-rock ratio with soil erosion quantity. Furthermore, multiple-factor linear regression analysis, stepwise regression analysis and multiple-factor non-linear regression analy- sis were made to establish a multiple-factor formula of soil erosion modulus with dif- ferent slopes and select regression models with high correlation coefficients. The re- sults show that a non-linear regression model reached extremely significant level or significant level (0.692〈FF〈0.988) and linear regression model achieved significant lev- el (0.523〈FF〈0.634). The effects of erosion modulus changed from decreasing to in- creasing and the erosion factors from high to low were rain intensity, vegetation cov- erage and bare-rock ratio when slope gradient was at 6~, 16~, 26~ and 36~. The mod- el is of high accuracy for predicting gentle slope and abtupt slope, which reveals correlation of erosion modulus with erosion factors in karst areas.
基金supported by the Federal German Ministry of Education and Research (BMBF) (No. 03 G 0669)coordinated by the German Jülich Research Centre (FZJ)
文摘Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFvc) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFvc range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using CLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to bemore reliable than the C factor based on the fractional vegetation cover.
基金the National Natural Science Foundation of China (Grant Nos. 40575043 and 40233034)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-229)
文摘It is very important to develop a universal soil model with higher simplicity and more accuracy, which can be widely applied to very general cases such as wet or dry soil, frozen or unfrozen soil and homogeneous or heterogeneous soil. Firstly in this study, based on analysis of both magnitude order and the numerical simulation results, the universal and simplified soil model (USSM) coupling heat and mass transport processes is developed. Secondly, in order to avoid the greater uncertainty caused by the phase change term in numerical iteration process for the model solution obtaining, new version of the universal simplified soil model (NUSSM) is further derived through variables transformation, and accordingly a more efficient numerical scheme for the new version is designed well. The simulation results from the NUSSM agree with the results from more complicated and accurate soil model very well, also reasonably reproduce the observed data under widely real conditions. The new version model, because of its simplicity, will match for the development of land surface model.
基金supported by the National 973 Program of China (2011CB100501)the National 863 Program of China(2013AA102901)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest, China (201203077)the Science and Technology Project for Grain Production, China (2011BAD16B15)
文摘Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.
基金Project(52068004)supported by the National Natural Science Foundation of ChinaProject(2018JJA160134)supported by the Natural Science Foundation of Guangxi Province,ChinaProject(AB19245018)supported by Key Research Projects of Guangxi Province,China。
文摘With the high-quality development of urban buildings,higher requirements are come up with for lateral bearing capacity of laterally loaded piles.Consequently,a more accurate analysis to predict the lateral response of the pile within an allowable displacement is an important issue.However,the current p-y curve methods cannot fully take into account the pile-soil interaction,which will lead to a large calculation difference.In this paper,a new analytical p-y curve is established and a finite difference method for determining the lateral response of pile is proposed,which can consider the separation effect of pile-soil interface and the coefficient of circumferential friction resistance.In particular,an analytical expression is developed to determine the compressive soil pressure by dividing the compressive soil pressure into two parts:initial compressive soil pressure and increment of compressive soil pressure.In addition,the relationship between compressive soil pressure and horizontal displacement of the pile is established based on the reasonable assumption.The correctness of the proposed method is verified through four examples.Based on the verified method,a parametric analysis is also conducted to investigate the influences of factors on lateral response of the pile,including internal friction angle,pile length and elastic modulus of pile.
基金supported by a bilateral scientific cooperation project financed by UGent-BOF, Belgiumand the Ministry of Science and Technology, China(2005-2)the Non-Profit Research Foundation for Agriculture of China (200803036)
文摘Soil organic carbon (SOC) is one of the centre issues related to not only soil fertility but also environmental safety. Assessing SOC dynamics in croplands has been a challenge in China for long due to the lack of appropriate methodologies and data sources. As an alternative approach for studying SOC dynamics, process-based models are adopted to meet the needs. In this paper, a process-based model, DeNitrification-DeComposition (DNDC), was applied to quantify the SOC storage and the spatial distribution in croplands of China in 2003, with the support of a newly compiled county-level soil/ climate/land use database. The simulated results showed that the total SOC storage in the top layer (0-30 cm) of the 1.18 × 10^8 ha croplands of China is 4.7-5.2 Pg C in 2003 with an average value of 4.95 Pg C. The SOC storage in the northeastern provinces (1.3 Pg C) accounts for about 1/4 of the whole national totals due to their dominantly fertile soils with high organic matter content. SOC density ranges from 3.9 to 4.4 kg C m 2, with an average of 4.2 kg C m^-2, a level is much lower than the world average level. The model results also indicated that high rates of SOC losses occurred in the croplands with the most common cropping patterns in China as like single soybean 〉 maize 〉 paddy 〉 cotton 〉 winter wheat and corn rotation. The results reported in this paper showed that there was still a great potential for improving SOC status in most croplands of China by adopting proper farming practices and land-use pattern. Therefore, long-term policy to protect SOC is urgently needed.
基金Project supported by Science&Technology Program of Hubei Traffic and Transport Office,ChinaProject(41272377)supported by the National Natural Science Foundation of China
文摘The weak intercalated soils in redbed soft rocks of Badong formation have obvious creep characters. In order to predict the unsaturated creep behaviors of weak intercalated soils, an unsaturated creep model was established based on the unsaturated creep tests of weak intercalated soils by using GDS triaxial apparatus. The results show that the creep behaviors of intercalated soils are apparent and significantly affected by matric suction. Based on this, an empirical Mesri creep model for intercalated soils under varying matric suctions was built. The fitting results show that the parameters Ed and m of this model are in good power relations with matric suction s and stress level Dr, respectively. An improved Mesri creep model was established involving stress-matric suction-strain-time, which is more precise than the Mesri creep model in predicting the unsaturated creep behaviors of weak intercalated soils.
基金supported by the National Natural Science Foundation of China (Grant No. 41201268)
文摘The infiltration process is a critical link between surface water and groundwater. In this research, a specific device to observe infiltration processes in homogeneous and heterogeneous soils with triangular and inverted triangular profiles was designed, and the Green-Ampt model was employed for the process simulation. The results indicate that(1) the wetting front in coarse texture soils transports faster than in fine texture soils;(2) for the homogeneous case, the wetting front in triangularshaped soils transports faster than the inverted triangular type, but the triangular-shaped soils show a lower infiltration rate;(3) in the initial step, the wetting front in triangular-shaped soils shows higher transport speed, but depicts lower speed with increase in the time;(4) both the wetting front and infiltration rate show a significant exponential relation with the time. From these findings, an empirical model was developed which agrees well with the observed data and provides a useful method for this field of soil research.
基金Project supported by the National Natural Science Foundation of China(No.11172251)the Open Fund of State Key Laboratory of Frozen Soil Engineering(No.SKLFSE201001)+1 种基金the Opening Project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology,No.KFJJ13-10M)the Project of Sichuan Provincial Youth Science and Technology Innovation Team,China(No.2013TD0004)
文摘By taking the frozen soil as a particle-reinforced composite material which consists of clay soil (i.e., the matrix) and ice particles, a micromechanical constitutive model is established to describe the dynamic compressive deformation of frozen soil. The proposed model is constructed by referring to the debonding damage theory of composite materials, and addresses the effects of strain rate and temperature on the dynamic compressive deformation of frozen soil. The proposed model is verified through comparison of the predictions with the corresponding dynamic experimental data of frozen soil obtained from the split Hopkinson pressure bar (SHPB) tests at different high strain rates and temperatures. It is shown that the predictions agree well with the experimental results.
基金supported by the National Basic Research Program of China(2009CB825105)
文摘Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.Here we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas.An automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region,China.Soil pH,soil temperature at 0–5 cm(Ts),soil volumetric water content at 0–5 cm(θs)and air temperature at10 cm above the soil surface(Tas)were simultaneously analyzed.Results highlight reduced sensitivity of Fc to Ts and good prediction of Fc by the model Fc=R10Q10(Tas–10)/10+r7q7(pH–7)+λTas+μθs+e which represents Fc as a sum of biotic and abiotic components.This presents an approximate method to quantify the contribution of soil abiotic CO2 exchange to Fc in alkaline soils of arid areas.
基金supported by the National Natural Science Foundation of China (41461063 and 41571339)the China Postdoctoral Science Foundation (2018M630682)the Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, the Chinese Academy of Sciences (Y412201430)
文摘Soil erosion is an important environmental threat in China.However,quantitative estimates of soil erosion in China have rarely been reported in the literature.In this study,soil loss potential in China was estimated by integrating satellite images,field samples,and ground observations based on the Revised Universal Soil Loss Equation(RUSLE).The rainfall erosivity factor was estimated from merged rainfall data using Collocated CoKriging(ColCOK)and downscaled by geographically weighted regression(GWR).The Random Forest(RF)regression approach was used as a tool for understanding and predicting the relationship between the soil erodibility factor and a set of environment factors.Our results show that the average erosion rate in China is 1.44 t ha^(–1) yr^(–1).More than 60%of the territory in China is influenced by soil erosion limitedly,with an average potential erosion rate less than 0.1 t ha^(–1) yr^(–1).Other unused land and other forested woodlands showed the highest erosion risk.Our estimates are comparable to those of runoff plot studies.Our results provide a useful tool for soil loss assessments and ecological environment protections.
基金Supported by National Natural Science Foundation of China(Nos.41102224 and 41101259)
文摘The existing^(210)Pb_(ex)mass balance models for the assessment of cultivated soil erosion are based on an assumption that^(210)Pb_(ex)is quite evenly mixed within the plough layer.However,the amount of^(210)Pb_(ex)distributed in the soils below the plough depth,like a downward tail in the lower part of the^(210)Pb_(ex)profile,has been largely ignored.In fact,after the initial cultivation of undisturbed soils,^(210)Pb_(ex)will diffuse downward from plough layer to the plough pan layer due to the concentration gradient.Assuming^(210)Pb_(ex)inventory is constant,the depth distribution in the two layers of the cultivated soils will achieve a steady state after continuous cultivation for 10.37 years,when^(210)Pb_(ex)is evenly distributed in the soils of the plough layer with an exponential concentration decline with depth in the soils of the plough pan layer,and the^(210)Pb_(ex)concentration at any depth will be invariable with time.The work reported in this paper attempts to explain the formation of the^(210)Pb_(ex)tail in the soil profile below the plough depth by theoretical derivation of the^(210)Pb_(ex)depth distribution process in the two layers of the cultivated soils,propose a^(210)Pb_(ex)mass balance model considering^(210)Pb_(ex)diffusion based on the existing model,and discuss the influence of the^(210)Pb_(ex)tail to the existing model.
文摘On the basis of analyzing the soil erosion factors in typical arid area basin, this article tries to build a model by using USLE (Universal Soil Loss Equation). The first step is to digitize the topographic map (1∶100?000) and form the DEM (Digital Elevation Model), then use them to obtain necessary data of topographic factors. The second step is to get main elements causing soil erosion through using Main Element Analyzing Program. The third step is to systematically analyze all factors of soil erosion by applying Grey Dynamic Model and Fuzzy Mathematics, and then take GIS software to draw the colored map in the way that different colors present different intensities of soil erosion. At last the regional change of soil erosion amount on the basis of the color map is analyzed.
基金The authors would like to thank Professors Sun Shufen and Li Shuxun for their valuable suggestion.ProfessorAlan Robock generously provided the Former Soviet Union observational data.This study is supported by NationalKey Developing Programme for Basic S
文摘A simple frozen soil parameterization scheme is developed based on NCAR LSM and the effects of re-vised scheme are investigated using Former Soviet Union (FSU) 6 stations measurement data. In the revised model, soil ice content and the energy change in phase change process is considered; the original soil thermal conductivity scheme is replaced by Johanson scheme and the soil thermal and hydraulic properties is modi-fied depending on soil ice content. The comparison of original model with revised model results indicates that the frozen soil scheme can reasonably simulate the energy budget in soil column and the variation of thermal and hydraulic properties as the soil ice content changes. Soil moisture in spring is decreased because of the reduction of infiltration and increment of runoff. Consequently, the partition of heat flux and surface temperature changes correspondingly.