The authors apologize for the erroneous transcription of the average chemical composition data of Apollo lunar soil samples in Table 4.The difference in chemical composition between lunar regolith simulants and actual...The authors apologize for the erroneous transcription of the average chemical composition data of Apollo lunar soil samples in Table 4.The difference in chemical composition between lunar regolith simulants and actual lunar samples is an important indicator for evaluating their similarity.For comparison,Table 4 lists the chemical compositions of Apollo 12,Apollo 14,Apollo 15,Apollo 16,and other classic lunar regolith simulants.However,the Apollo lunar soil data in the original Table 4 contained errors,which have been corrected in this corrigendum.展开更多
A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define...A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.展开更多
An observation operator is a bridge linking the system state vector and observations in a data assimilation system. Despite its importance, the degree to which an observation operator influences the performance of dat...An observation operator is a bridge linking the system state vector and observations in a data assimilation system. Despite its importance, the degree to which an observation operator influences the performance of data assimilation methods is still poorly understood. This study aimed to analyze the influences of linear and nonlinear observation operators on the sequential data assimilation through soil temperature simulation using the unscented particle filter(UPF) and the common land model. The linear observation operator between unprocessed simulations and observations was first established. To improve the correlation between simulations and observations, both were processed based on a series of equations. This processing essentially resulted in a nonlinear observation operator. The linear and nonlinear observation operators were then used along with the UPF in three assimilation experiments: an hourly in situ soil surface temperature assimilation, a daily in situ soil surface temperature assimilation, and a moderate resolution imaging spectroradiometer(MODIS) land surface temperature(LST) assimilation. The results show that the filter improved the soil temperature simulation significantly with the linear and nonlinear observation operators. The nonlinear observation operator improved the UPF's performance more significantly for the hourly and daily in situ observation assimilations than the linear observation operator did, while the situation was opposite for the MODIS LST assimilation. Because of the high assimilation frequency and data quality, the simulation accuracy was significantly improved in all soil layers for hourly in situ soil surface temperature assimilation, while the significant improvements of the simulation accuracy were limited to the lower soil layers for the assimilation experiments with low assimilation frequency or low data quality.展开更多
The purpose of this paper is to study about the interrelationship between the backscattering intensity of PALSAR data and the laboratory measurement of dielectric constant and soil moisture. The characterization of th...The purpose of this paper is to study about the interrelationship between the backscattering intensity of PALSAR data and the laboratory measurement of dielectric constant and soil moisture. The characterization of the dielectric constant of arid soils in the 0.3 - 3 GHz frequency range, particularly focused in L-band was analyzed in varied soil moisture content and soil textures. The interrelationship between the relative dielectric constant with soil textures and backscattering of PALSAR data was also analyzed and statistical model was computed. In this study, after collecting the soil samples in the field from top soil (0 - 10 cm) in a homogeneous area then, the dielectric constant was measured using a dielectric probe tool kit. For investigated of the characteristics and behaviors of the dielectric constant and relationship with backscattering a variety of moisture content from 0% to 40% and soil fraction conditions was tested in laboratory condition. All data were analyzed by integrating it with other geophysical data in GIS, such as land cover and soil texture. Thus, the regression model computed between measured soil moisture and backscattering coefficient of PALSR data which were extracted as same point of each soil sample pixel. Finally, after completing the preprocessing, such as removing the speckle noise by averaging, the model was applied to the PALSAR data for retrieving the soil moisture map in arid region of Iran. The analysis of dielectric constant properties result has shown the soil texture after the moisture content has the largest effected on dielectric constant. In addition, the PALSAR data in dual polarization are also able to derive the soil moisture using statistical method. The dielectric constant and backscattering shown have the exponential relationship and the HV polarization mode is more sensitive than the HH mode to soil moisture and overestimated the soil moisture as well. The validation of result has shown the 4.2 Vol-% RMSE of soil moisture. It means that the backscattering analysis should consider about other factors such a surface roughness and mix pixel of vegetation effective.展开更多
Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of m...Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter...Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone.展开更多
For many environmental and agricultural applications, an accurate estimation of surface soil moisture is essential. This study sought to determine whether combining Sentinel-1A, Sentinel-2A, and meteorological data wi...For many environmental and agricultural applications, an accurate estimation of surface soil moisture is essential. This study sought to determine whether combining Sentinel-1A, Sentinel-2A, and meteorological data with artificial neural networks (ANN) could improve soil moisture estimation in various land cover types. To train and evaluate the model’s performance, we used field data (provided by La Tuscia University) on the study area collected during time periods between October 2022, and December 2022. Surface soil moisture was measured at 29 locations. The performance of the model was trained, validated, and tested using input features in a 60:10:30 ratio, using the feed-forward ANN model. It was found that the ANN model exhibited high precision in predicting soil moisture. The model achieved a coefficient of determination (R<sup>2</sup>) of 0.71 and correlation coefficient (R) of 0.84. Furthermore, the incorporation of Random Forest (RF) algorithms for soil moisture prediction resulted in an improved R<sup>2</sup> of 0.89. The unique combination of active microwave, meteorological data and multispectral data provides an opportunity to exploit the complementary nature of the datasets. Through preprocessing, fusion, and ANN modeling, this research contributes to advancing soil moisture estimation techniques and providing valuable insights for water resource management and agricultural planning in the study area.展开更多
The aim of the study was to assess the current state and development of the Soil Health Index (SHI) at 13 localities with various soil-ecological conditions in the Slovak Republic. The SHI was developed using a minimu...The aim of the study was to assess the current state and development of the Soil Health Index (SHI) at 13 localities with various soil-ecological conditions in the Slovak Republic. The SHI was developed using a minimum soil data set, physical and chemical soil parameters in combination with environmental parameters (land use, gradients). The SHI is one numerical value accumulates information about the state of soil health and its ability to provide soil functions and thus ecosystems in the optimal range. The highest SHI values were determined at model localities used as arable land (Haplic Chernozem, Fluvisol) located in a warm climate at altitudes up to 200 meters above sea level. Ecosystems with very low and low value are mostly grasslands with mildly cold climate (Cambisol) and considerable slope, agroecosystem on low organic matter (Arenosol). Arable ecosystem SHI is also reduced in areas of geochemical anomalies and areas with anthropogenic load, where there is a higher content of risk elements. The SHI changes are mainly the result of changes in dynamic indicators such as soil response and soil bulk density.展开更多
With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated b...With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated by two different algorithms: the Simple Model Average (SMA) and the Weighted Average Method (WAM). The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically-generated and actual near-surface soil moisture measurements. The results from the synthetic experiment show that the performances of the SMA and WAM algorithms were quite different. The SMA algorithm did not help to improve the estimates of soil moisture at the deep layers, although its performance was not the worst when compared with the results from the single-model EnKF. On the contrary, the results from the WAM algorithm were better than those from any single-model EnKF. The tested results from assimilating the field measurements show that the performance of the two multimodel EnKF algorithms was very stable compared with the single-model EnKF. Although comparisons could only be made at three shallow layers, on average, the performance of the WAM algorithm was still slightly better than that of the SMA algorithm. As a result, the WAM algorithm should be adopted to approximate the multimodel background superensemble error covariance and hence used to estimate soil moisture states at the relatively deep layers.展开更多
Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-...Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-specific agricultural management and environmental modelling.We examined the utility of legacy pedon data for disaggregating soil polygons and the effectiveness of similarity-based prediction for making use of the under-or over-sampled legacy pedon data for the disaggregation.The method consisted of three steps.First,environmental similarities between the pedon sites and each location were computed based on soil formative environmental factors.Second,according to soil types of the pedon sites,the similarities were aggregated to derive similarity distribution for each soil type.Third,a hardening process was performed on the maps to allocate candidate soil types within the polygons.The study was conducted at the soil subgroup level in a semi-arid area situated in Manitoba,Canada.Based on 186 independent pedon sites,the evaluation of the disaggregated map of soil subgroups showed an overall accuracy of 67% and a Kappa statistic of 0.62.The map represented a better spatial pattern of soil subgroups in both detail and accuracy compared to a dominant soil subgroup map,which was commonly used in practice.Incorrect predictions mainly occurred in the agricultural plain area and the soil subgroups that are very similar in taxonomy,indicating that new environmental covariates need to be developed.We concluded that the combination of legacy pedon data with similarity-based prediction is an effective solution for soil polygon disaggregation.展开更多
From fermentation broth of soil fungus 254-2 obtained from Yunnan province, a new macrocylic trichochecene was isolated. The structure was determined on the basis of spectroscopic evidences especially the 2-D NMR spe...From fermentation broth of soil fungus 254-2 obtained from Yunnan province, a new macrocylic trichochecene was isolated. The structure was determined on the basis of spectroscopic evidences especially the 2-D NMR spectra.展开更多
Natural soil-forming factors such as landforms, parent materials or biota lead to high variability in soil properties. However, there is not enough research quantifying which environmental factor(s) can be the most re...Natural soil-forming factors such as landforms, parent materials or biota lead to high variability in soil properties. However, there is not enough research quantifying which environmental factor(s) can be the most relevant to predicting soil properties at the catchment scale in semi-arid areas. Thus, this research aims to investigate the ability of multivariate statistical analyses to distinguish which soil properties follow a clear spatial pattern conditioned by specific environmental characteristics in a semi-arid region of Iran. To achieve this goal, we digitized parent materials and landforms by recent orthophotography. Also, we extracted ten topographical attributes and five remote sensing variables from a digital elevation model(DEM) and the Landsat Enhanced Thematic Mapper(ETM), respectively. These factors were contrasted for 334 soil samples(depth of 0–30 cm). Cluster analysis and soil maps reveal that Cluster 1 comprises of limestones, massive limestones and mixed deposits of conglomerates with low soil organic carbon(SOC) and clay contents, and Cluster 2 is composed of soils that originated from quaternary and early quaternary parent materials such as terraces, alluvial fans, lake deposits, and marls or conglomerates that register the highest SOC content and the lowest sand and silt contents. Further, it is confirmed that soils with the highest SOC and clay contents are located in wetlands, lagoons, alluvial fans and piedmonts, while soils with the lowest SOC and clay contents are located in dissected alluvial fans, eroded hills, rock outcrops and steep hills. The results of principal component analysis using the remote sensing data and topographical attributes identify five main components, which explain 73.3% of the total variability of soil properties. Environmental factors such as hillslope morphology and all of the remote sensing variables can largely explain SOC variability, but no significant correlation is found for soil texture and calcium carbonate equivalent contents. Therefore, we conclude that SOC can be considered as the best-predicted soil property in semi-arid regions.展开更多
Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation...Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation as values and aims,the relationship between human and land as a basis,ecosystem as a center,overall control as a goal and agricultural ecological engineering as a mean,environmental pollution detection,as one of bottlenecks for agricultural products and food security,should be solved firstly;through the field survey in dry years from 2009 to 2010 when drought and flood were frequent and the frequency of drought was higher than that of flood,plus the determination of surface water flow and water quantity in a small typical river basin,the correlation of local water,soil and gas in the county could be found,and the transfer of monitoring focus from water environment to atmospheric environment was possible and necessary.The study would promote the quantitative research on the correlation among water,soil and gas,and the results were in accordance with the conclusions of related studies.展开更多
The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kalman filter (EnKF) assimilation scheme, includin...The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kalman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The "true" soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d^-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.展开更多
The spatial estimation for soil properties was improved and sampling intensities also decreased in terms of incorporated auxiliary data. In this study, kriging and two interpolation methods were proven well to estimat...The spatial estimation for soil properties was improved and sampling intensities also decreased in terms of incorporated auxiliary data. In this study, kriging and two interpolation methods were proven well to estimate auxiliary variables: cokriging and regression-kriging, and using the salinity data from the first two stages as auxiliary variables, the methods both improved the interpolation of soil salinity in coastal saline land. The prediction accuracy of the three methods was observed under different sampling density of the target variable by comparison with another group of 80 validation sample points, from which the root-mean-square error (RMSE) and correlation coefficient (r) between the predicted and measured values were calculated. The results showed, with the help of auxiliary data, whatever the sample size of the target variable may be, cokriging and regression-kriging performed better than ordinary kriging. Moreover, regression-kriging produced on average more accurate predictions than cokriging. Compared with the kriging results, cokriging improved the estimations by reducing RMSE from 23.3 to 29% and increasing r from 16.6 to 25.5%, regression-kriging improved the estimations by reducing RMSE from 25 to 41.5% and increasing r from 16.8 to 27.2%. Therefore, regression-kriging shows promise for improved prediction for soil salinity and reduction of soil sampling intensity considerably while maintaining high prediction accuracy. Moreover, in regression-kriging, the regression model can have any form, such as generalized linear models, non-linear models or tree-based models, which provide a possibility to include more ancillary variables.展开更多
文摘The authors apologize for the erroneous transcription of the average chemical composition data of Apollo lunar soil samples in Table 4.The difference in chemical composition between lunar regolith simulants and actual lunar samples is an important indicator for evaluating their similarity.For comparison,Table 4 lists the chemical compositions of Apollo 12,Apollo 14,Apollo 15,Apollo 16,and other classic lunar regolith simulants.However,the Apollo lunar soil data in the original Table 4 contained errors,which have been corrected in this corrigendum.
文摘A multivariate statistical analysis was performed on multi-element soil geochemical data from the Koda Hill-Bulenga gold prospects in the Wa-Lawra gold belt, northwest Ghana. The objectives of the study were to define gold relationships with other trace elements to determine possible pathfinder elements for gold from the soil geochemical data. The study focused on seven elements, namely, Au, Fe, Pb, Mn, Ag, As and Cu. Factor analysis and hierarchical cluster analysis were performed on the analyzed samples. Factor analysis explained 79.093% of the total variance of the data through three factors. This had the gold factor being factor 3, having associations of copper, iron, lead and manganese and accounting for 20.903% of the total variance. From hierarchical clustering, gold was also observed to be clustering with lead, copper, arsenic and silver. There was further indication that, gold concentrations were lower than that of its associations. It can be inferred from the results that, the occurrence of gold and its associated elements can be linked to both primary dispersion from underlying rocks and secondary processes such as lateritization. This data shows that Fe and Mn strongly associated with gold, and alongside Pb, Ag, As and Cu, these elements can be used as pathfinders for gold in the area, with ferruginous zones as targets.
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0402706 and 2016YFC0402710)the National Natural Science Foundation of China(Grants No.51709046 and41323001)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University(Grant No.2015490311)
文摘An observation operator is a bridge linking the system state vector and observations in a data assimilation system. Despite its importance, the degree to which an observation operator influences the performance of data assimilation methods is still poorly understood. This study aimed to analyze the influences of linear and nonlinear observation operators on the sequential data assimilation through soil temperature simulation using the unscented particle filter(UPF) and the common land model. The linear observation operator between unprocessed simulations and observations was first established. To improve the correlation between simulations and observations, both were processed based on a series of equations. This processing essentially resulted in a nonlinear observation operator. The linear and nonlinear observation operators were then used along with the UPF in three assimilation experiments: an hourly in situ soil surface temperature assimilation, a daily in situ soil surface temperature assimilation, and a moderate resolution imaging spectroradiometer(MODIS) land surface temperature(LST) assimilation. The results show that the filter improved the soil temperature simulation significantly with the linear and nonlinear observation operators. The nonlinear observation operator improved the UPF's performance more significantly for the hourly and daily in situ observation assimilations than the linear observation operator did, while the situation was opposite for the MODIS LST assimilation. Because of the high assimilation frequency and data quality, the simulation accuracy was significantly improved in all soil layers for hourly in situ soil surface temperature assimilation, while the significant improvements of the simulation accuracy were limited to the lower soil layers for the assimilation experiments with low assimilation frequency or low data quality.
文摘The purpose of this paper is to study about the interrelationship between the backscattering intensity of PALSAR data and the laboratory measurement of dielectric constant and soil moisture. The characterization of the dielectric constant of arid soils in the 0.3 - 3 GHz frequency range, particularly focused in L-band was analyzed in varied soil moisture content and soil textures. The interrelationship between the relative dielectric constant with soil textures and backscattering of PALSAR data was also analyzed and statistical model was computed. In this study, after collecting the soil samples in the field from top soil (0 - 10 cm) in a homogeneous area then, the dielectric constant was measured using a dielectric probe tool kit. For investigated of the characteristics and behaviors of the dielectric constant and relationship with backscattering a variety of moisture content from 0% to 40% and soil fraction conditions was tested in laboratory condition. All data were analyzed by integrating it with other geophysical data in GIS, such as land cover and soil texture. Thus, the regression model computed between measured soil moisture and backscattering coefficient of PALSR data which were extracted as same point of each soil sample pixel. Finally, after completing the preprocessing, such as removing the speckle noise by averaging, the model was applied to the PALSAR data for retrieving the soil moisture map in arid region of Iran. The analysis of dielectric constant properties result has shown the soil texture after the moisture content has the largest effected on dielectric constant. In addition, the PALSAR data in dual polarization are also able to derive the soil moisture using statistical method. The dielectric constant and backscattering shown have the exponential relationship and the HV polarization mode is more sensitive than the HH mode to soil moisture and overestimated the soil moisture as well. The validation of result has shown the 4.2 Vol-% RMSE of soil moisture. It means that the backscattering analysis should consider about other factors such a surface roughness and mix pixel of vegetation effective.
基金Under the auspices of National Natural Science Foundation of China(No.41230751,41101547)Scientific Research Foundation of Graduate School of Nanjing University(No.2012CL14)
文摘Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, Huan Jing-Hyper Spectral Imager(HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were distinguished by using the normalized differential vegetation index at the band length of 705 nm(NDVI705). The soil salt content of each area was predicted by various algorithms. A Normal Soil Salt Content Response Index(NSSRI) was constructed from continuum-removed reflectance(CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal bare flat area(NDVI705 < 0.2). The soil adjusted salinity index(SAVI) was applied to predict the soil salt content in the vegetation-covered area(NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt content mapping(R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for monitoring soil salt content on a large scale.
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951101)the Program for Changjiang Scholars and Innovative Research Teams in Universities,the Ministry of Education,China (Grant No. IRT0717)
文摘Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone.
文摘For many environmental and agricultural applications, an accurate estimation of surface soil moisture is essential. This study sought to determine whether combining Sentinel-1A, Sentinel-2A, and meteorological data with artificial neural networks (ANN) could improve soil moisture estimation in various land cover types. To train and evaluate the model’s performance, we used field data (provided by La Tuscia University) on the study area collected during time periods between October 2022, and December 2022. Surface soil moisture was measured at 29 locations. The performance of the model was trained, validated, and tested using input features in a 60:10:30 ratio, using the feed-forward ANN model. It was found that the ANN model exhibited high precision in predicting soil moisture. The model achieved a coefficient of determination (R<sup>2</sup>) of 0.71 and correlation coefficient (R) of 0.84. Furthermore, the incorporation of Random Forest (RF) algorithms for soil moisture prediction resulted in an improved R<sup>2</sup> of 0.89. The unique combination of active microwave, meteorological data and multispectral data provides an opportunity to exploit the complementary nature of the datasets. Through preprocessing, fusion, and ANN modeling, this research contributes to advancing soil moisture estimation techniques and providing valuable insights for water resource management and agricultural planning in the study area.
文摘The aim of the study was to assess the current state and development of the Soil Health Index (SHI) at 13 localities with various soil-ecological conditions in the Slovak Republic. The SHI was developed using a minimum soil data set, physical and chemical soil parameters in combination with environmental parameters (land use, gradients). The SHI is one numerical value accumulates information about the state of soil health and its ability to provide soil functions and thus ecosystems in the optimal range. The highest SHI values were determined at model localities used as arable land (Haplic Chernozem, Fluvisol) located in a warm climate at altitudes up to 200 meters above sea level. Ecosystems with very low and low value are mostly grasslands with mildly cold climate (Cambisol) and considerable slope, agroecosystem on low organic matter (Arenosol). Arable ecosystem SHI is also reduced in areas of geochemical anomalies and areas with anthropogenic load, where there is a higher content of risk elements. The SHI changes are mainly the result of changes in dynamic indicators such as soil response and soil bulk density.
基金supported by the National Natural Science Foundation of China (Grant Nos 40775065 and 41075074)the National Special Fund for Meteorology (Grant No GYHY200806029)
文摘With the combination of three land surface models (LSMs) and the ensemble Kalman filter (EnKF), a multimodel EnKF is proposed in which the multimodel background superensemble error covariance matrix is estimated by two different algorithms: the Simple Model Average (SMA) and the Weighted Average Method (WAM). The two algorithms are tested and compared in terms of their abilities to retrieve the true soil moisture profile by respectively assimilating both synthetically-generated and actual near-surface soil moisture measurements. The results from the synthetic experiment show that the performances of the SMA and WAM algorithms were quite different. The SMA algorithm did not help to improve the estimates of soil moisture at the deep layers, although its performance was not the worst when compared with the results from the single-model EnKF. On the contrary, the results from the WAM algorithm were better than those from any single-model EnKF. The tested results from assimilating the field measurements show that the performance of the two multimodel EnKF algorithms was very stable compared with the single-model EnKF. Although comparisons could only be made at three shallow layers, on average, the performance of the WAM algorithm was still slightly better than that of the SMA algorithm. As a result, the WAM algorithm should be adopted to approximate the multimodel background superensemble error covariance and hence used to estimate soil moisture states at the relatively deep layers.
基金supported by the National Natural Science Foundation of China (41130530,91325301,41431177,41571212,41401237)the Project of "One-Three-Five" Strategic Planning & Frontier Sciences of the Institute of Soil Science,Chinese Academy of Sciences (ISSASIP1622)+1 种基金the Government Interest Related Program between Canadian Space Agency and Agriculture and Agri-Food,Canada (13MOA01002)the Natural Science Research Program of Jiangsu Province (14KJA170001)
文摘Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-specific agricultural management and environmental modelling.We examined the utility of legacy pedon data for disaggregating soil polygons and the effectiveness of similarity-based prediction for making use of the under-or over-sampled legacy pedon data for the disaggregation.The method consisted of three steps.First,environmental similarities between the pedon sites and each location were computed based on soil formative environmental factors.Second,according to soil types of the pedon sites,the similarities were aggregated to derive similarity distribution for each soil type.Third,a hardening process was performed on the maps to allocate candidate soil types within the polygons.The study was conducted at the soil subgroup level in a semi-arid area situated in Manitoba,Canada.Based on 186 independent pedon sites,the evaluation of the disaggregated map of soil subgroups showed an overall accuracy of 67% and a Kappa statistic of 0.62.The map represented a better spatial pattern of soil subgroups in both detail and accuracy compared to a dominant soil subgroup map,which was commonly used in practice.Incorrect predictions mainly occurred in the agricultural plain area and the soil subgroups that are very similar in taxonomy,indicating that new environmental covariates need to be developed.We concluded that the combination of legacy pedon data with similarity-based prediction is an effective solution for soil polygon disaggregation.
基金The present work was supported by Foundation of State Key Basic Research and Development Project(G1998051100),Beijing.
文摘From fermentation broth of soil fungus 254-2 obtained from Yunnan province, a new macrocylic trichochecene was isolated. The structure was determined on the basis of spectroscopic evidences especially the 2-D NMR spectra.
基金financial support of Isfahan University of Technology (IUT) for this research
文摘Natural soil-forming factors such as landforms, parent materials or biota lead to high variability in soil properties. However, there is not enough research quantifying which environmental factor(s) can be the most relevant to predicting soil properties at the catchment scale in semi-arid areas. Thus, this research aims to investigate the ability of multivariate statistical analyses to distinguish which soil properties follow a clear spatial pattern conditioned by specific environmental characteristics in a semi-arid region of Iran. To achieve this goal, we digitized parent materials and landforms by recent orthophotography. Also, we extracted ten topographical attributes and five remote sensing variables from a digital elevation model(DEM) and the Landsat Enhanced Thematic Mapper(ETM), respectively. These factors were contrasted for 334 soil samples(depth of 0–30 cm). Cluster analysis and soil maps reveal that Cluster 1 comprises of limestones, massive limestones and mixed deposits of conglomerates with low soil organic carbon(SOC) and clay contents, and Cluster 2 is composed of soils that originated from quaternary and early quaternary parent materials such as terraces, alluvial fans, lake deposits, and marls or conglomerates that register the highest SOC content and the lowest sand and silt contents. Further, it is confirmed that soils with the highest SOC and clay contents are located in wetlands, lagoons, alluvial fans and piedmonts, while soils with the lowest SOC and clay contents are located in dissected alluvial fans, eroded hills, rock outcrops and steep hills. The results of principal component analysis using the remote sensing data and topographical attributes identify five main components, which explain 73.3% of the total variability of soil properties. Environmental factors such as hillslope morphology and all of the remote sensing variables can largely explain SOC variability, but no significant correlation is found for soil texture and calcium carbonate equivalent contents. Therefore, we conclude that SOC can be considered as the best-predicted soil property in semi-arid regions.
基金Supported by Specific Research Project for National Environmental Public Welfare Industry " Study on the Control Technology of Agricultural Pollution System in the Subtropical Zone"Postdoctoral Science Foundation of Central South University
文摘Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation as values and aims,the relationship between human and land as a basis,ecosystem as a center,overall control as a goal and agricultural ecological engineering as a mean,environmental pollution detection,as one of bottlenecks for agricultural products and food security,should be solved firstly;through the field survey in dry years from 2009 to 2010 when drought and flood were frequent and the frequency of drought was higher than that of flood,plus the determination of surface water flow and water quantity in a small typical river basin,the correlation of local water,soil and gas in the county could be found,and the transfer of monitoring focus from water environment to atmospheric environment was possible and necessary.The study would promote the quantitative research on the correlation among water,soil and gas,and the results were in accordance with the conclusions of related studies.
基金the National Natural Science Foundation of China(Grant Nos.40475012,90202014, 2001CB309404).
文摘The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kalman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The "true" soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d^-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.
基金the National Natural Science Foundation of China (40571066, 40001008)the Postdoctoral Science Foundation of China (20060401048) the Key Program of Science and Technology Bureau of Zhejiang Province, China 030523).
文摘The spatial estimation for soil properties was improved and sampling intensities also decreased in terms of incorporated auxiliary data. In this study, kriging and two interpolation methods were proven well to estimate auxiliary variables: cokriging and regression-kriging, and using the salinity data from the first two stages as auxiliary variables, the methods both improved the interpolation of soil salinity in coastal saline land. The prediction accuracy of the three methods was observed under different sampling density of the target variable by comparison with another group of 80 validation sample points, from which the root-mean-square error (RMSE) and correlation coefficient (r) between the predicted and measured values were calculated. The results showed, with the help of auxiliary data, whatever the sample size of the target variable may be, cokriging and regression-kriging performed better than ordinary kriging. Moreover, regression-kriging produced on average more accurate predictions than cokriging. Compared with the kriging results, cokriging improved the estimations by reducing RMSE from 23.3 to 29% and increasing r from 16.6 to 25.5%, regression-kriging improved the estimations by reducing RMSE from 25 to 41.5% and increasing r from 16.8 to 27.2%. Therefore, regression-kriging shows promise for improved prediction for soil salinity and reduction of soil sampling intensity considerably while maintaining high prediction accuracy. Moreover, in regression-kriging, the regression model can have any form, such as generalized linear models, non-linear models or tree-based models, which provide a possibility to include more ancillary variables.