High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants(POPs)from contaminated clay soils can lead to intensive energy consumption.Therefore,this article provides a ...High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants(POPs)from contaminated clay soils can lead to intensive energy consumption.Therefore,this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs,and then discusses their enhanced mechanisms for contributing to a green economy.Ca-based additives have been used to reduce plasticity of bentonite clay,absorb water and replenish system heat.In contrast,non-Ca-based additives have been used to decrease the plasticity of kaolin clay.The soil structure and soil plasticity can be changed through cation exchange and flocculation processes.The transitionmetal oxides and alkalimetal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons,petroleum and emerging contaminants.In this system,reactive oxygen species(•O_(2)^(-)and•OH)are generated fromthermal excitation without strong chemical oxidants.Moreover,multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis.Alternatively,the alkali,nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions.Especially,photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.展开更多
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an...Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.展开更多
To investigate the effects of Tianshifu soil conditioners on rice growth and their control effects on Cd absorption and accumulation in rice, a test was carded out in the field typically polluted by Cd in Hunan Provin...To investigate the effects of Tianshifu soil conditioners on rice growth and their control effects on Cd absorption and accumulation in rice, a test was carded out in the field typically polluted by Cd in Hunan Province. The results showed that the Tianshifu soil conditioner, soil bacterial conditioner and the combination of Tian- shifu soil conditioner and soil bacterial conditioner all could promote rice growth, im- prove rice yield and reduce significantly Cd content in rice grains. In Beishan, the Cd contents in rice grains treated by Tianshifu soil conditioner, soil bacterial condi- tioner and the combination of Tianshifu soil conditioner and soil bacterial conditioner were reduced by 37.63% (P〈0.05), 32.59% (P〈0.05) and 27.95% (P〈0.05) respec- tively compared with that in rice grains treated by conventional fertilization; In Xiang- tan, the Cd contents in rice grains were reduced by 54.36% (P〈0.05), 50.19% (P〈 0.05) and 45.22% (P〈0.05) respectively. The rice grains harvested at the two test sites all met the national food safety standards. Considering the control effect on Cd contamination, Tianshifu soil conditioner 〉 combination of Tianshifu soil condi- tioner and soil bacterial conditioner 〉 Tianshifu soil bacterial conditioner. In addition to reducing Cd absorption in rice, as described in the lime application treatment, the application of Tianshifu soil conditioners also inhibited the transportation of Cd from rice straws to rice grains. The Tianshifu soil conditioner, soil bacterial conditioner and combination of Tianshifu soil conditioner and soil bacterial conditioner also effec- tively improved the soil acidity, increased the soil pH value and reduced soil avail- able Cd content to some extent.展开更多
A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use i...A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate.展开更多
This study deals with the seismic fragility of elastic structural systems equipped with single concave sliding(friction pendulum system(FPS)) isolators considering different soil conditions. The behavior of these ...This study deals with the seismic fragility of elastic structural systems equipped with single concave sliding(friction pendulum system(FPS)) isolators considering different soil conditions. The behavior of these systems is analyzed by employing a two-degree-of-freedom model, whereas the FPS response is described by means of a velocity-dependent model. The uncertainty in the seismic inputs is taken into account by considering artificial seismic excitations modelled as timemodulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. In particular, the filter parameters, which control the frequency content of the random excitations, are calibrated to describe stiff, medium and soft soil conditions. The sliding friction coefficient at large velocity is also considered as a random variable modelled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities of exceeding different limit states related to both the reinforced concrete(RC) superstructure and isolation level, defining the seismic fragility curves within an extensive parametric study carried out for different structural system properties and soil conditions. The abovementioned seismic fragility curves are useful to evaluate the seismic reliability of base-isolated elastic systems equipped with FPS and located in any site for any soil condition.展开更多
The addition of silicon(Si)and organic fertilizers to soil conditioners can inhibit the transfer of heavy metal ions from soil to crops.However,it is not clear how Si and organic fertilizers affect soil properties and...The addition of silicon(Si)and organic fertilizers to soil conditioners can inhibit the transfer of heavy metal ions from soil to crops.However,it is not clear how Si and organic fertilizers affect soil properties and the micro-ecological environment and thereby reduce cadmium(Cd)accumulation in rice.In this study,the effects of L-type soil conditioners containing Si and organic fertilizers on bacterial and fungal community diversity,soil pH,organic matter,and available Si were analyzed with field experiments at two sites in Liuzhou City and Hezhou City,respectively,in Guangxi,China.With the increase of Si and organic fertilizer content in soil conditioner,rice yield respectively increased by 16.8–25.8 and 6.8–13.1%,and rice Cd content decreased significantly by 8.2–21.1 and 10.8–40.6%,respectively,at the two experimental sites.Soil microbiome analysis showed that the increase in abundance of Firmicutes and Actinobacteriota bacteria associated with Cd adsorption and sequestration,and Basidiomycota fungal populations associated with degradation of macromolecules favored the inhibition of soil Cd activity(soil exchangeable Cd decreased by 14.4–14.8 and 18.1–20.6%).This was associated with an increase in organic matter and Si content caused by applying soil conditioners.In conclusion,L-type soil conditioners,rich in Si and organic fertilizer,can reduce soil Cd bioavailability by regulating the dominant Cd passivating flora in the soil and ultimately reduce Cd accumulation in rice.展开更多
The effects of biochar as a soil conditioner on microbial communities were studied. The results showed that, at all the growth stages of tobacco, the quantity of microorganisms in the rhizosphere soil added with the s...The effects of biochar as a soil conditioner on microbial communities were studied. The results showed that, at all the growth stages of tobacco, the quantity of microorganisms in the rhizosphere soil added with the soil conditioner was higher than control (CK). The results of metagenome detection indicated that the diversity of microbial communities in soil added with the soil conditioner was also higher than the CK, and the rate of tobacco bacterial wilt and the disease index decreased by 27.6% and 34.6%, respectively, compared with the CK. In conclusion, the soil con- ditioner could reduce the soil-borne disease by improving micro-ecological environ- ment and diversity of microbial communities in rhizosphere soil to maintain the soil balance.展开更多
Oyster shell soil conditioner had significant influence on soil and rhizospheric microorganisms in their biomass,respiratory intensity and nutritional requirement. It could stimulate growth of soil and rhizospheric mi...Oyster shell soil conditioner had significant influence on soil and rhizospheric microorganisms in their biomass,respiratory intensity and nutritional requirement. It could stimulate growth of soil and rhizospheric microorganisms, especially nitrogen-fixers, and intensify soil respiration in proportion to the dose and fertilizing time of the conditioner, leading to the increase in the number of nitrogen fixing bacteria and the decrease in the number of bacteria with special nutrition demands.展开更多
A field experiment was conducted to evaluate the remediation effects of 14 soil conditioners for Cd-polluted paddy fields contrasted with conventional fertilization and liming.The results showed that soil conditioners...A field experiment was conducted to evaluate the remediation effects of 14 soil conditioners for Cd-polluted paddy fields contrasted with conventional fertilization and liming.The results showed that soil conditioners had no significant impact on rice yields.Though the soil conditioners had stable effects on decreasing the Cd content in grains,the effects varied with the category of conditioners.In general,The Cd contents of early rice and late rice were reduced by 22.65%~44.24%and 15.20%~63.03%,respectively.Additionally,the stem and leaves showed the same decreasing tendency.Cluster analysis suggested that soil conditioners can be divided into three categories:the first category increases the soil pH to inhibit the Cd activity and cut down the Cd translocation from soil to stem and leaves,which is most efficient in the reduction of Cd content in rice grains;the other category relies on the antagonism or co-precipitation between Cd and certain elements to inhibit the translocation and redistribution of Cd from rice stems to grains,providing a common effect on Cd reduction;the last category can be seen as a combination of the former two categories from the perspective of its functional mechanism and it has a moderate effect on the reduction of Cd contents in rice grains.展开更多
To investigate the effects of“Runbang”soil conditioner on simultaneously decreasing cadmium(Cd)and arsenic(As)in early-season paddy field,a typical red mud field in Hunan Province was selected for monitoring the dyn...To investigate the effects of“Runbang”soil conditioner on simultaneously decreasing cadmium(Cd)and arsenic(As)in early-season paddy field,a typical red mud field in Hunan Province was selected for monitoring the dynamic changes of Cd and As contents in early-season rice plants and soils,plus the soil physical-chemical properties and rice yields.Results of the field experiments indicated that the soil conditioner could significantly reduce Cd and As contents in soil and rice grain,whereas it could increase rice yield.Applying Runbang soil conditioner(1500~2100 kg/hm^2)to paddies brought about a reduction of 23.7%~44.8% and 24.3%~40.5% in available Cd and As contents of the soil,an increase of 0.9~1.1 units in soil pH value,a decline of 35.6%~51.1% and 22.0%~40.6% in Cd and As contents of rice grains,and a rise of 2%~5% in rice yields,respectively.展开更多
In the present study,reference is made to a pigsty with an estimated total animal weight of 500,000 kg.The quantities and quality(typical characteristics)of the generated waste are calculated.The total waste occurs af...In the present study,reference is made to a pigsty with an estimated total animal weight of 500,000 kg.The quantities and quality(typical characteristics)of the generated waste are calculated.The total waste occurs after the cleaning washes in the premises of the breeding unit.Semi-liquid waste is treated in solid-liquid phase mechanical separation plants.The resulting solids,waste(reduced humidity),go to storage areas,manure.These areas are shaped concrete basins,in which there is aerobic digestion“composting”.This process results in odorless organochumic material which is further used as a soil conditioner.展开更多
This work demonstrates the possibility to make a full valuation of a solid waste such as turkey manure, to obtain methane and a soil conditioner/fertilizer from turkey manure anaerobic digestion in a mesophilic pilot-...This work demonstrates the possibility to make a full valuation of a solid waste such as turkey manure, to obtain methane and a soil conditioner/fertilizer from turkey manure anaerobic digestion in a mesophilic pilot-scale continuous stirred tank reactor at different organic loading rates (OLR) (from 0.5 to 2.5 kgVS/m3d). The application of the anaerobic mono-digestion for the turkey manure treatment was an efficient alternative, because high volatile solids removal and methane were obtained in addition to obtaining a stabilized solid waste that can be applied as soil conditioner, based on its nutritional parameters and humic substances content. In this way, the turkey manure anaerobic digestion can be applied avoiding the co-digestion of the manure with other wastes and allows a process devoid of pollutant emissions, obtaining two products. The reactor operation depends on the OLR, and its operation does not allow an OLR above 1.5 kgVS/m3d. Higher OLR produced a decrease in the TS and VS removals and methane productivity.展开更多
The excavated soil in the chamber of an earth pressure balance (EPB) shield is typically required to achieve a plastic flow state during tunneling to ensure a stable excavation face and the smooth discharge of soil. W...The excavated soil in the chamber of an earth pressure balance (EPB) shield is typically required to achieve a plastic flow state during tunneling to ensure a stable excavation face and the smooth discharge of soil. When EPB shield tunneling takes place in composite strata with gravelly sand above and moderately weathered argillaceous siltstone with high clay mineral content below, the changing sand–rock ratio on the excavation face leads to a greater risk of water spewing and clogging on the cutterhead, posing enormous challenges to soil conditioning. In the study reported here, we used foam and bentonite slurry as conditioning materials for mixed soil. A series of laboratory tests were performed on the conditioned soil with different sand–rock ratios and water contents to determine the optimal injection ratios of conditioning materials. A miniature EPB shield model test involving soil pressure balance, conditioning material injection, and tunneling control was conducted to simulate the continuous excavation process from full-face sand to full-face rock stratum. The model and field test results of thrust, torque, and soil pressure in the soil chamber and screw conveyor validate the effectiveness of the proposed soil conditioning schemes for composite strata with different sand–rock ratios. The test results indicate that the volume ratio 4:1 of foam to bentonite slurry achieves better performance of the conditioned gravelly sand at a lower total injection ratio (TIR < 10%). The bentonite slurry has a significant improvement effect on the flow plasticity of crushed moderately weathered argillaceous siltstone. The influence of bentonite slurry on the slump value of conditioned soil is greater than that of foam. Based on the optimal injection ratios of conditioning materials for full-face sand (ϕ = ∞) and full-face rock (ϕ = 0), the injection ratios for composite strata were obtained by weighted summation according to the area ratio of different strata on the tunnel face. This research provides valuable insights into soil conditioning and parameter determination methods for EPB shield tunneling in composite strata.展开更多
The results of the 2022-2025 study conducted for the vulnerability assessment of pastures and for the development of improvement measures on the degraded land sections in the arid and semi-arid provinces of the Caucas...The results of the 2022-2025 study conducted for the vulnerability assessment of pastures and for the development of improvement measures on the degraded land sections in the arid and semi-arid provinces of the Caucasus under the global climate change conditions are introduced in the current article.The main goal of our scientific work is to study and assess the current ecological and resource state of natural phytocenoses,pastures and hayfields in the arid and semi-arid landscapes under climate change.The paper presents the results of determining the areas and levels of degradation of the natural biogeocenoses and biogeocenoses of the pastures and hayfields in the mountain and highland landscapes.The results were obtained using remote sensing,field and laboratory studies and analyses.The conducted studies have revealed that along 34,174.5 ha pasture and 1342.0 meadows areas of the pastures at the Areni,Yeghegis,Yeghegnadzor and Vayq consolidated administrative territories situated in the arid and semi-arid zones of the Vayots Dzor Region high degradation was recorded in about 6508 hectares of pasture and 407 hectares of meadows areas,which is related to irregular and uncontrolled economic mismanagement of the local population and global climate change.To improve the ecological condition,accessibility and quality of ecosystem services of the pastures,hayfields and natural meadows,comprehensive restoration bioecological and agrotechnical measures have been proposed.They are aimed at improving the air,water and nutrient regimes of soils,at their bioprotection,as well as at the general increase in area and at improving the economic characteristics of the vegetation cover.Such measures on the ecosystem basis are appropriate in the context of enriching the qualitative composition of plants with useful ecological and economic bioecological characteristics,taking into account the characteristics of landscapes,weather and climatic conditions,and agricultural opportunities.展开更多
The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of soun...The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.展开更多
Tunnelling with earth pressure balance-tunnel boring machine(EPB-TBM)in clayey soil requires a careful conditioning to reduce the effect of clogging and stickiness.In the last decade,many researches have been carried ...Tunnelling with earth pressure balance-tunnel boring machine(EPB-TBM)in clayey soil requires a careful conditioning to reduce the effect of clogging and stickiness.In the last decade,many researches have been carried out to understand how to reduce these negative behaviors using conditioning agents,and different laboratory test procedures have been proposed using both powdered clay and clay chips to quantify and assess the effect of conditioning in terms of reduction of clogging and stickiness.In this paper a review of the various proposed tests is presented.Unfortunately,it can be seen that no unified assessment method on the soil conditioning is available and therefore the designers do not have consistent data on which their choices are based.The present research proposes a laboratory test methodology to study clay conditioning taking both the behavior of chips and powdered clay into account.The proposed procedure has been applied on two different clays,and the test results are presented and discussed to show how the proposed methodology could be applied.展开更多
Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t...Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.展开更多
This article deals with the biochemical characteristics of varieties of Saint Mary’s Thistle such as Panacea, Debut and Samaryanka. Based on the studies, it was found that the highest oil content was found in the spe...This article deals with the biochemical characteristics of varieties of Saint Mary’s Thistle such as Panacea, Debut and Samaryanka. Based on the studies, it was found that the highest oil content was found in the species Debut (26%). <span style="font-family:Verdana;">The lowest oil content was observed in the variety </span><span style="font-family:Verdana;">Samaryanka</span><span style="font-family:Verdana;"> (19%). The highest protein content and the sum of total amino acids in the seeds of St. Mary’s Thistle varieties were found in the variety Debut (131.1), and the lowest indication was observed in the species Samaryanka (79.2). By the number of replaceable amino acids existing in the seeds of the species of St. Mary’s Thistle, it was found in the Varieties Debut (126.3), and the lowest indication was observed in the variety Samaryanka (112). Based on the results of studies and the noted biochemical characteristics and varietal differences of the St. Mary’s Thistle, the possibility and expediency of expanding the crops of this species in the soil and climatic conditions of the Khorezm region are suggested. The research was conducted 2017-2019 y.</span>展开更多
基金supported by the National Key R&D Program of China(No.2018YFC1802101)the National Natural Science Foundation of China(No.52170149).
文摘High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants(POPs)from contaminated clay soils can lead to intensive energy consumption.Therefore,this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs,and then discusses their enhanced mechanisms for contributing to a green economy.Ca-based additives have been used to reduce plasticity of bentonite clay,absorb water and replenish system heat.In contrast,non-Ca-based additives have been used to decrease the plasticity of kaolin clay.The soil structure and soil plasticity can be changed through cation exchange and flocculation processes.The transitionmetal oxides and alkalimetal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons,petroleum and emerging contaminants.In this system,reactive oxygen species(•O_(2)^(-)and•OH)are generated fromthermal excitation without strong chemical oxidants.Moreover,multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis.Alternatively,the alkali,nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions.Especially,photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.
基金the National Natural Science Foundation of China(Grant No.U20A2081)West Light Foundation of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202102)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Project(Grant No.2019QZKK0105).
文摘Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%.
文摘To investigate the effects of Tianshifu soil conditioners on rice growth and their control effects on Cd absorption and accumulation in rice, a test was carded out in the field typically polluted by Cd in Hunan Province. The results showed that the Tianshifu soil conditioner, soil bacterial conditioner and the combination of Tian- shifu soil conditioner and soil bacterial conditioner all could promote rice growth, im- prove rice yield and reduce significantly Cd content in rice grains. In Beishan, the Cd contents in rice grains treated by Tianshifu soil conditioner, soil bacterial condi- tioner and the combination of Tianshifu soil conditioner and soil bacterial conditioner were reduced by 37.63% (P〈0.05), 32.59% (P〈0.05) and 27.95% (P〈0.05) respec- tively compared with that in rice grains treated by conventional fertilization; In Xiang- tan, the Cd contents in rice grains were reduced by 54.36% (P〈0.05), 50.19% (P〈 0.05) and 45.22% (P〈0.05) respectively. The rice grains harvested at the two test sites all met the national food safety standards. Considering the control effect on Cd contamination, Tianshifu soil conditioner 〉 combination of Tianshifu soil condi- tioner and soil bacterial conditioner 〉 Tianshifu soil bacterial conditioner. In addition to reducing Cd absorption in rice, as described in the lime application treatment, the application of Tianshifu soil conditioners also inhibited the transportation of Cd from rice straws to rice grains. The Tianshifu soil conditioner, soil bacterial conditioner and combination of Tianshifu soil conditioner and soil bacterial conditioner also effec- tively improved the soil acidity, increased the soil pH value and reduced soil avail- able Cd content to some extent.
基金Project partly supported by a grant from Expressway International Ltd., USA.
文摘A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate.
文摘This study deals with the seismic fragility of elastic structural systems equipped with single concave sliding(friction pendulum system(FPS)) isolators considering different soil conditions. The behavior of these systems is analyzed by employing a two-degree-of-freedom model, whereas the FPS response is described by means of a velocity-dependent model. The uncertainty in the seismic inputs is taken into account by considering artificial seismic excitations modelled as timemodulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. In particular, the filter parameters, which control the frequency content of the random excitations, are calibrated to describe stiff, medium and soft soil conditions. The sliding friction coefficient at large velocity is also considered as a random variable modelled through a uniform probability density function. Incremental dynamic analyses are developed in order to evaluate the probabilities of exceeding different limit states related to both the reinforced concrete(RC) superstructure and isolation level, defining the seismic fragility curves within an extensive parametric study carried out for different structural system properties and soil conditions. The abovementioned seismic fragility curves are useful to evaluate the seismic reliability of base-isolated elastic systems equipped with FPS and located in any site for any soil condition.
基金supported by the National Natural Science Foundation of China(31560122)the Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety,China。
文摘The addition of silicon(Si)and organic fertilizers to soil conditioners can inhibit the transfer of heavy metal ions from soil to crops.However,it is not clear how Si and organic fertilizers affect soil properties and the micro-ecological environment and thereby reduce cadmium(Cd)accumulation in rice.In this study,the effects of L-type soil conditioners containing Si and organic fertilizers on bacterial and fungal community diversity,soil pH,organic matter,and available Si were analyzed with field experiments at two sites in Liuzhou City and Hezhou City,respectively,in Guangxi,China.With the increase of Si and organic fertilizer content in soil conditioner,rice yield respectively increased by 16.8–25.8 and 6.8–13.1%,and rice Cd content decreased significantly by 8.2–21.1 and 10.8–40.6%,respectively,at the two experimental sites.Soil microbiome analysis showed that the increase in abundance of Firmicutes and Actinobacteriota bacteria associated with Cd adsorption and sequestration,and Basidiomycota fungal populations associated with degradation of macromolecules favored the inhibition of soil Cd activity(soil exchangeable Cd decreased by 14.4–14.8 and 18.1–20.6%).This was associated with an increase in organic matter and Si content caused by applying soil conditioners.In conclusion,L-type soil conditioners,rich in Si and organic fertilizer,can reduce soil Cd bioavailability by regulating the dominant Cd passivating flora in the soil and ultimately reduce Cd accumulation in rice.
基金Supported by Science and Technology Project of Nanping Tobacco Company(NYK2012-14-3)~~
文摘The effects of biochar as a soil conditioner on microbial communities were studied. The results showed that, at all the growth stages of tobacco, the quantity of microorganisms in the rhizosphere soil added with the soil conditioner was higher than control (CK). The results of metagenome detection indicated that the diversity of microbial communities in soil added with the soil conditioner was also higher than the CK, and the rate of tobacco bacterial wilt and the disease index decreased by 27.6% and 34.6%, respectively, compared with the CK. In conclusion, the soil con- ditioner could reduce the soil-borne disease by improving micro-ecological environ- ment and diversity of microbial communities in rhizosphere soil to maintain the soil balance.
基金support from the 863 National High-Technology Program of China(819-07-10).
文摘Oyster shell soil conditioner had significant influence on soil and rhizospheric microorganisms in their biomass,respiratory intensity and nutritional requirement. It could stimulate growth of soil and rhizospheric microorganisms, especially nitrogen-fixers, and intensify soil respiration in proportion to the dose and fertilizing time of the conditioner, leading to the increase in the number of nitrogen fixing bacteria and the decrease in the number of bacteria with special nutrition demands.
基金Supported by Specialized Scientific Research in Public Welfare Sector Water Resources Ministry(201501019)Scientific and Technological Innovation Project in Hunan Academy of Agricultural Sciences(2017JC57)+1 种基金Science and Technology Planning Project in Changsha(kq1703010)Post Scientist of Rice Industrial System in China(CARS-01-28)~~
文摘A field experiment was conducted to evaluate the remediation effects of 14 soil conditioners for Cd-polluted paddy fields contrasted with conventional fertilization and liming.The results showed that soil conditioners had no significant impact on rice yields.Though the soil conditioners had stable effects on decreasing the Cd content in grains,the effects varied with the category of conditioners.In general,The Cd contents of early rice and late rice were reduced by 22.65%~44.24%and 15.20%~63.03%,respectively.Additionally,the stem and leaves showed the same decreasing tendency.Cluster analysis suggested that soil conditioners can be divided into three categories:the first category increases the soil pH to inhibit the Cd activity and cut down the Cd translocation from soil to stem and leaves,which is most efficient in the reduction of Cd content in rice grains;the other category relies on the antagonism or co-precipitation between Cd and certain elements to inhibit the translocation and redistribution of Cd from rice stems to grains,providing a common effect on Cd reduction;the last category can be seen as a combination of the former two categories from the perspective of its functional mechanism and it has a moderate effect on the reduction of Cd contents in rice grains.
文摘To investigate the effects of“Runbang”soil conditioner on simultaneously decreasing cadmium(Cd)and arsenic(As)in early-season paddy field,a typical red mud field in Hunan Province was selected for monitoring the dynamic changes of Cd and As contents in early-season rice plants and soils,plus the soil physical-chemical properties and rice yields.Results of the field experiments indicated that the soil conditioner could significantly reduce Cd and As contents in soil and rice grain,whereas it could increase rice yield.Applying Runbang soil conditioner(1500~2100 kg/hm^2)to paddies brought about a reduction of 23.7%~44.8% and 24.3%~40.5% in available Cd and As contents of the soil,an increase of 0.9~1.1 units in soil pH value,a decline of 35.6%~51.1% and 22.0%~40.6% in Cd and As contents of rice grains,and a rise of 2%~5% in rice yields,respectively.
文摘In the present study,reference is made to a pigsty with an estimated total animal weight of 500,000 kg.The quantities and quality(typical characteristics)of the generated waste are calculated.The total waste occurs after the cleaning washes in the premises of the breeding unit.Semi-liquid waste is treated in solid-liquid phase mechanical separation plants.The resulting solids,waste(reduced humidity),go to storage areas,manure.These areas are shaped concrete basins,in which there is aerobic digestion“composting”.This process results in odorless organochumic material which is further used as a soil conditioner.
文摘This work demonstrates the possibility to make a full valuation of a solid waste such as turkey manure, to obtain methane and a soil conditioner/fertilizer from turkey manure anaerobic digestion in a mesophilic pilot-scale continuous stirred tank reactor at different organic loading rates (OLR) (from 0.5 to 2.5 kgVS/m3d). The application of the anaerobic mono-digestion for the turkey manure treatment was an efficient alternative, because high volatile solids removal and methane were obtained in addition to obtaining a stabilized solid waste that can be applied as soil conditioner, based on its nutritional parameters and humic substances content. In this way, the turkey manure anaerobic digestion can be applied avoiding the co-digestion of the manure with other wastes and allows a process devoid of pollutant emissions, obtaining two products. The reactor operation depends on the OLR, and its operation does not allow an OLR above 1.5 kgVS/m3d. Higher OLR produced a decrease in the TS and VS removals and methane productivity.
基金supported by the National Natural Science Foundation of China(Grant No.52378414)the Natural Science Basis Research Plan in Shaanxi Province of China(No.2019JLP-23).
文摘The excavated soil in the chamber of an earth pressure balance (EPB) shield is typically required to achieve a plastic flow state during tunneling to ensure a stable excavation face and the smooth discharge of soil. When EPB shield tunneling takes place in composite strata with gravelly sand above and moderately weathered argillaceous siltstone with high clay mineral content below, the changing sand–rock ratio on the excavation face leads to a greater risk of water spewing and clogging on the cutterhead, posing enormous challenges to soil conditioning. In the study reported here, we used foam and bentonite slurry as conditioning materials for mixed soil. A series of laboratory tests were performed on the conditioned soil with different sand–rock ratios and water contents to determine the optimal injection ratios of conditioning materials. A miniature EPB shield model test involving soil pressure balance, conditioning material injection, and tunneling control was conducted to simulate the continuous excavation process from full-face sand to full-face rock stratum. The model and field test results of thrust, torque, and soil pressure in the soil chamber and screw conveyor validate the effectiveness of the proposed soil conditioning schemes for composite strata with different sand–rock ratios. The test results indicate that the volume ratio 4:1 of foam to bentonite slurry achieves better performance of the conditioned gravelly sand at a lower total injection ratio (TIR < 10%). The bentonite slurry has a significant improvement effect on the flow plasticity of crushed moderately weathered argillaceous siltstone. The influence of bentonite slurry on the slump value of conditioned soil is greater than that of foam. Based on the optimal injection ratios of conditioning materials for full-face sand (ϕ = ∞) and full-face rock (ϕ = 0), the injection ratios for composite strata were obtained by weighted summation according to the area ratio of different strata on the tunnel face. This research provides valuable insights into soil conditioning and parameter determination methods for EPB shield tunneling in composite strata.
基金the framework of the Project 21T-4C045 of the Higher Education and Science Committee(RA)。
文摘The results of the 2022-2025 study conducted for the vulnerability assessment of pastures and for the development of improvement measures on the degraded land sections in the arid and semi-arid provinces of the Caucasus under the global climate change conditions are introduced in the current article.The main goal of our scientific work is to study and assess the current ecological and resource state of natural phytocenoses,pastures and hayfields in the arid and semi-arid landscapes under climate change.The paper presents the results of determining the areas and levels of degradation of the natural biogeocenoses and biogeocenoses of the pastures and hayfields in the mountain and highland landscapes.The results were obtained using remote sensing,field and laboratory studies and analyses.The conducted studies have revealed that along 34,174.5 ha pasture and 1342.0 meadows areas of the pastures at the Areni,Yeghegis,Yeghegnadzor and Vayq consolidated administrative territories situated in the arid and semi-arid zones of the Vayots Dzor Region high degradation was recorded in about 6508 hectares of pasture and 407 hectares of meadows areas,which is related to irregular and uncontrolled economic mismanagement of the local population and global climate change.To improve the ecological condition,accessibility and quality of ecosystem services of the pastures,hayfields and natural meadows,comprehensive restoration bioecological and agrotechnical measures have been proposed.They are aimed at improving the air,water and nutrient regimes of soils,at their bioprotection,as well as at the general increase in area and at improving the economic characteristics of the vegetation cover.Such measures on the ecosystem basis are appropriate in the context of enriching the qualitative composition of plants with useful ecological and economic bioecological characteristics,taking into account the characteristics of landscapes,weather and climatic conditions,and agricultural opportunities.
文摘The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.
文摘Tunnelling with earth pressure balance-tunnel boring machine(EPB-TBM)in clayey soil requires a careful conditioning to reduce the effect of clogging and stickiness.In the last decade,many researches have been carried out to understand how to reduce these negative behaviors using conditioning agents,and different laboratory test procedures have been proposed using both powdered clay and clay chips to quantify and assess the effect of conditioning in terms of reduction of clogging and stickiness.In this paper a review of the various proposed tests is presented.Unfortunately,it can be seen that no unified assessment method on the soil conditioning is available and therefore the designers do not have consistent data on which their choices are based.The present research proposes a laboratory test methodology to study clay conditioning taking both the behavior of chips and powdered clay into account.The proposed procedure has been applied on two different clays,and the test results are presented and discussed to show how the proposed methodology could be applied.
基金funded by the National Natural Science Foundation of China(32060301).
文摘Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube.
文摘This article deals with the biochemical characteristics of varieties of Saint Mary’s Thistle such as Panacea, Debut and Samaryanka. Based on the studies, it was found that the highest oil content was found in the species Debut (26%). <span style="font-family:Verdana;">The lowest oil content was observed in the variety </span><span style="font-family:Verdana;">Samaryanka</span><span style="font-family:Verdana;"> (19%). The highest protein content and the sum of total amino acids in the seeds of St. Mary’s Thistle varieties were found in the variety Debut (131.1), and the lowest indication was observed in the species Samaryanka (79.2). By the number of replaceable amino acids existing in the seeds of the species of St. Mary’s Thistle, it was found in the Varieties Debut (126.3), and the lowest indication was observed in the variety Samaryanka (112). Based on the results of studies and the noted biochemical characteristics and varietal differences of the St. Mary’s Thistle, the possibility and expediency of expanding the crops of this species in the soil and climatic conditions of the Khorezm region are suggested. The research was conducted 2017-2019 y.</span>