With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorat...With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.展开更多
As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent ...As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.展开更多
Compacted soil has an adverse effect on plant roots and affects water and nutrient availability.However,different degrees of soil compaction may be suitable for growth and development of different understory species.T...Compacted soil has an adverse effect on plant roots and affects water and nutrient availability.However,different degrees of soil compaction may be suitable for growth and development of different understory species.This study determined whether soil compaction could explain characteristics of 10 different Dahurian larch(Larix gmelinii Rupr.)forest types in the Daxing’anling area.The relationship of soil compaction to soil depth was also studied.Forty-five tests were conducted on soil compaction of the 10 forest types with multiple comparisons,of which five showed no significant differences.At different soil depths,there were significant differences in soil compaction among forest types.The correlation between the degree of soil compaction and depth was positive and significant.The Larix gmelinii—shrub forest type,L.gmelinii—herb forest type,and L.gmelinii—swamp forest type were significantly different in soil compaction according to soil depth.This research indicates that,as a physical property,soil compaction may.展开更多
In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investi...In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investigations were performed to compare hydrostatic compression test (HCT) responses and evaluate the compression index, Cc, which is an indicator of the soil's susceptibility to compaction-induced damage. The experiments have been performed on 24 soil samples typologies. Each sample has been obtained by combining three types of soil granulometry (types A, B and C) with a relative content varying from 0% to 100% in 20% increments. Soil type A had a granulometry ranging between 0.5 mm and 1 mm, type B between 0.25 mm and 0.5 mm, and type C less than 0.25 mm. These samples were representative of a sandy soil, chemically inactive and had various granulometries and initial moisture contents. A cell for HCT has been set up to allow the initial volume measurement of the test pieces and the subsequent changes during HCT with an estimated error less than 0.1 cm3. All samples were pre-compacted and prepared in agreement with the actual standards. The experimental data are reported in diagrams, the data allowed comparison of the mechanical behaviors between the considered unsaturated soils and underlined how soil moisture and granulometry affect soil response during HCT. Furthermore, because of the methodology used, the equipment was very economical.展开更多
While straw mulching has been recognized for mitigating compaction,the multifactorial effects of straw parameters(content,length,laying modes)under static versus dynamic loads remain poorly quantified.Straw mulching m...While straw mulching has been recognized for mitigating compaction,the multifactorial effects of straw parameters(content,length,laying modes)under static versus dynamic loads remain poorly quantified.Straw mulching may alter the stress transfer in the soil when applying static or dynamic loads.This study systematically evaluated stress and energy dissipation mechanisms using laboratory simulations:a plate sinkage test and an adapted Proctor test.The results demonstrated that the straw content(0-20 Mg/hm^(2))dominantly governs dissipation efficiency,with maximum stress dissipation ratios of 45.6%(static load>200 kPa)and energy dissipation ratios of 38.64%(dynamic high-energy).Longer straw(0.20 m)and ordered laying modes enhanced stress dispersion only under low static loads,while dynamic loads exhibited weaker dissipation.The study reveals that the damping effect of straw is strongest under low stress static load,so it is necessary to reduce the compaction of agricultural machinery and optimize the allocation of straw,such as 15-20 Mg/hm^(2),to alleviate compaction in clay loam soils.These findings can provide actionable insights for designing straw-based soil conservation strategies and improving compaction prediction models in mechanized agriculture.展开更多
As important methods to guide the field soil compaction,the standard and modified Proctor tests for laboratory compaction have remained unchanged for decades,which should be improved to better understand the compactio...As important methods to guide the field soil compaction,the standard and modified Proctor tests for laboratory compaction have remained unchanged for decades,which should be improved to better understand the compaction process and the properties of soils.In this study,an accelerometer was installed on a Marshall impact compactor to capture the dynamic response of three types of soils during compaction.The experimental test results indicated that the acceleration curve for each blow gradually evolved to a stable pattern following the progress of compaction,and the impact and gyratory locking points were linearly related with coefficient of determination R2equal to 0.59.The impact compaction curve could be further constructed by filtering the structural resonance,which can be used to quantify the compactability of soil materials.Although each type of soil had a unique set of compaction curves,the slope and value of compaction curve altered accordingly as the moisture content changed for the same soil.In addition,the average acceleration value at the final compaction stage could serve as the target value of soil stiffness.展开更多
Soil compaction leads to crop yield reduction in Northeast of China.The interaction mechanism of driveragricultural machinery-black soil is not clear.A comprehensive field experiment of 4 hm2 of maize seeding was carr...Soil compaction leads to crop yield reduction in Northeast of China.The interaction mechanism of driveragricultural machinery-black soil is not clear.A comprehensive field experiment of 4 hm2 of maize seeding was carried out in Baiquan County Cooperative.The results showed that the average increase rates of soil compaction before and after sowing were 118.82%and 71.02%.The SEM showed that waist fatigue had the greatest impact on soil compaction,and the unit fatigue of waist caused 1.51 and 1.27 unit compactions to the soil at the depths of 10 cm and 20 cm.The neck,waist,arm and leg fatigue of drivers increased the surface soil compaction by 1.83,1.76,1.78 and 1.55 units,and the deep soil compaction by 1.65,1.58,1.60 and 1.40 units.The results can provide a reference for the integration of human factor efficiency and conservation tillage.展开更多
A two-year experiment was carried out on the effect of sprinkler irrigation on the topsoil structure in a winter wheat field. A border-irrigated field was used as the control group. The total soil porosity, pore size ...A two-year experiment was carried out on the effect of sprinkler irrigation on the topsoil structure in a winter wheat field. A border-irrigated field was used as the control group. The total soil porosity, pore size distribution, pore shape distribution, soil cracks and soil compaction were measured. The sprinkler irrigation brought significant changes to the total soil porosity, capillary porosity, air-filled porosity and pore shape of topsoil layers in comparison with the border irrigation. The total porosity and air-filled porosity of the topsoil in the sprinkler irrigation were higher than those in the border irrigation. The changes in the air-filled and elongated pores were the main reasons for the changes in total porosity. The porosities of round and irregular pores in topsoil under sprinkler irrigation were lower than those under border irrigation. Sprinkler irrigation produced smaller soil cracks than border irrigation did, so sprinkler irrigation may restrain the development of macropore flow in comparison with border irrigation. The topsoil was looser under sprinkler irrigation than under border irrigation. According to the conditions of topsoil structure, it is preferable for crops to grow under sprinkler irrigation than under border irrigation.展开更多
[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water res...[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water resources. [Method] Three differ- ent loosening treatments for maize in ridges were performed in field trials as fol- lows: conventional ridge tillage, loosening the cm in spring (deep loosening in spring), and depth of 30 cm in autumn (deep loosening in soils between rows to a depth of 30 oosening the soils between rows to a autumn). Then the soil properties and the development of root system were measured to evaluate the effects of different loosening methods. [Result] Soil compactness was significantly reduced after deep loosening in spring, There were significant differences in soil compactness in 0-20 cm depth and soil bulk density in 0-40 cm depth between deep loosening in spring and deep loosening in autumn, deep loosening in spring and conventional ridge tillage. The soil water holding capacity was also significantly different between the two deep loosening treatments and conventional ridge tillage. Moreover, the root ac- tive absorption area of maize of deep loosening in spring was higher than that of conventionai ridge tillage. [Conclusion] Deep loosening can reduce soil compactness, bulk density, and improve soil water holding capacity, soil water content and the root activity of maize. Deep loosening in spring is better in soil improvement be- cause spring is closer to the growth period of crops than autumn. So, deep loosen- ing is conducive to the improvement of soil compactness and structure.展开更多
In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water con...In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.展开更多
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moist...Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles.展开更多
The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of N...The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 era) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.展开更多
The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at dif...The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at different soil strengths.With the increasing capacity of numerical computers and simulation software,finite element modeling of tire/terrain interaction seems a good approach for predicting the effect of change on the parameters.In this work,an elaborated 3D model fully complianning with the geometry of radial tire 115/60R13 was established,using commercial code Solidwork Simulation.The hyper-elastic and incompressible rubber as tire main material was analyzed by Moony-Rivlin model.The Drucker-Prager yield criterion was used to model the soil compaction.Results show that the model realistically predicts the laboratory tests outputs of the modeled tire on the soft soil.展开更多
Wood extraction by heavy machinery has always been associated with soil disturbance in mountain forests,and the degree of soil degradation is influenced by several factors,including site and soil characteristics,soil ...Wood extraction by heavy machinery has always been associated with soil disturbance in mountain forests,and the degree of soil degradation is influenced by several factors,including site and soil characteristics,soil moisture,type of equipment used,and number of machine passes.The effects of ground-based skidding operations on the physical properties of soils with different texture were evaluated at different levels of traffic frequency and trail gradient at two sites in an Iranian temperate forest.The treatments included combinations of three different traffic frequencies(3,8,and 14 passes of a rubber-tired cable skidder),three levels of trail gradient(<10%,10%–20%,and>20%) and two soil texture classes,clay loam(Site 1) and sandy loam(Site 2).The average gravimetric soil moisture at the time of skidding was 23%(Site 1) and 20%(Site 2).The average dry bulk density and total porosity of the undisturbed soil(control) were0.71 g cm-3 and 73.3% at Site 1(clay loam) and 0.86 g cm-3and 59.1% at Site 2(sandy loam),respectively.At site 1(fine-textured soil),rutting began after three passes of the skidder,whereas at site 2(coarse-textured soil),rutting occurred only after eight passes.Independent of the traffic frequency and trail gradient,machine impact on the fine-textured soil caused greater increases in bulk density and rut depth compared to that on the coarse-textured soil.After three skidder passes and independent from trail gradients,dry bulk density at Site 1 increased by 54.8% compared to that of the undisturbed control,and the increase was 45.5% at Site 2.Therefore,medium to fine-textured soils are more susceptible to compaction than coarse-textured soils.Such soils,especially when moist,should be protected using brush mats created from harvesting residues during the forest processing phase.展开更多
A study was conducted to investigate the effects of skid trail slope and traffic levels on soil disturbances at two soil depths (0--10 and 10-20 cm). The treatments were set at four traffic levels (2, 7, 12 and 20...A study was conducted to investigate the effects of skid trail slope and traffic levels on soil disturbances at two soil depths (0--10 and 10-20 cm). The treatments were set at four traffic levels (2, 7, 12 and 20) two slope classes (〈20% and 〉20%) and two soil depths (0-10 and 10-20 cm). Results show that skidder traffic, longitudinal slope and soil depth have significant effect on soil bulk density in skid trail. Compari- son of average soil bulk density in different traffic levels shows that there are significant differences in average bulk density between different traffic levels and control (p〈0.05). The average bulk densities in different slopes and soil depths are significantly increased with increase in traffic levels, maximized at 12 passes (p〈0.05), but there are no significant differences between 12 and 20 passes. The interaction effects between traffic and soil depth are significant (F005,3=0.109, p〈0.001). For all traffic treatments, there are significant differences in soil moisture con- tent between the two slope classes and the two depths (p〈0.001). However, the interaction effects between traffic levels and slope classes are not significant (p 〉0.05), although skidder traffic and slope affected soil moisture content.展开更多
Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage ...Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage in a clayey red soil. Compared with conventional tillage(C) and deep tillage(D), soil compaction(P) and no-till(N) significantly increased soil PR in the 0-15 cm layer. The PR increased dramatically as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical profile(0-20 cm) but also in the horizontal layer at the same distance(0-5, 5-10, 10-15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume significantly decreased. Specifically, the maize root length declined exponentially from 309 to 64 cm per plant with an increase in soil PR from 491 to 3 370 k Pa; the roots almost stopped elongating when the soil PR was larger than 2 200 k Pa. It appeared that fine roots(〈2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils.展开更多
Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, whi...Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, which is usually neglected, is to avoid mixing organic matter with road materials during excavation and embankment construction. The current study aimed to assess the influence of organic matter on the physical properties and mechanical behaviors of forest soil and to analyze the relation between the amount of organic matter and the behavior of forest soil as road material. A typical soil sample from the study area was collected beside a newly constructed roadbed. The soil was mixed with different percentages of organic matter(control treatment, 5, 10, and 15% by mass) and different tests including Atterberg limits, standard compaction, and California bearing ratio(CBR) tests were conducted on these different soil mixtures. The results showed that soil plasticity increased linearly with increasing organic matter.Increasing the organic matter from 0%(control) to 15%resulted in an increase of 11.64% of the plastic limit and 15.22% of the liquid limit after drying at 110 ℃. Also,increasing the organic matter content reduced the soil maximum dry density and increased the optimum moisture content. Increasing the organic matter from 0 to 15% resulted in an increase of 11.0% of the optimum moisture content and a decrease of 0.29 g/cm;of the maximum dry density. Organic matter decreased the CBR, which is used as the index of road strength. Adding 15% organic matter to the soil resulted in a decrease of the CBR from 15.72 to 4.75%. There was a significant difference between the two drying temperatures(60 and 110 ℃) for the same organic matter mixtures with lower water content values after drying at 60 ℃. The results revealed the adverse influence of organic matter on soil engineering properties and showed the importance of organic matter removal before excavation and fill construction.展开更多
Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induce...Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop.展开更多
The crop yield is related to several factors, among these, soil tillage, soil compaction and crop rotation. This study aimed to evaluate the winter cover crops and crop rotation influence on soil physical properties a...The crop yield is related to several factors, among these, soil tillage, soil compaction and crop rotation. This study aimed to evaluate the winter cover crops and crop rotation influence on soil physical properties and grain yield of dry beans, maize and soybean for two growing seasons. Three experiments were conducted, corresponding to dry beans, maize and soybean crops. It was used the randomized block design with three treatments and four replications consisted by 3 × 10 m plots. The treatments were: two cover crops systems and crop rotation in no-till, and the control, consisting of winter fallow and conventional tillage. The cover crop dry matter, soil physical properties and grain yield for dry beans, maize and soybean in the two growing seasons were evaluated. Crop rotation systems and cover crops showed a trend to increase maize and soybean yields. Crop rotation in no-till increases soil compaction in the superficial layer compared to conventional tillage, but does not reduce the dry beans, maize and soybean yields.展开更多
基金Supported by China Agriculture Research System(Sugar Crops)of Ministry of Agriculture and Rural Affairs and Ministry of Finance(CARS-170601)Natural Science Foundation of Heilongjiang Province(C201239).
文摘With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.
文摘As agricultural mechanization is becoming more and more popular, soil compaction, on basis of agricultural machinery, has become a serious problem that can not be ignored. Soil compaction, which is caused by frequent til age and large load in the field, may have different effects on various properties of soil. Soil com-paction may result in different conditions, such as increased soil density and the mechanical resistance, and decreased soil ventilation and the capacity of water holding and storage, but uptaking capacity of chemical elements is restricted. There-fore, soil compaction has some negative impacts on soil properties, physical y, chemical y, or biological y, as wel as plant growth. This research analyzed the cause and the harm of soil compaction in recent years, and some effective mea-sures were proposed to improve soil compaction, in order to reduce the extent of soil compaction caused by agricultural machinery.
基金We thank the Inner Mongolia Daxing’anling Forest Ecosystem Research Station for field support and other support.
文摘Compacted soil has an adverse effect on plant roots and affects water and nutrient availability.However,different degrees of soil compaction may be suitable for growth and development of different understory species.This study determined whether soil compaction could explain characteristics of 10 different Dahurian larch(Larix gmelinii Rupr.)forest types in the Daxing’anling area.The relationship of soil compaction to soil depth was also studied.Forty-five tests were conducted on soil compaction of the 10 forest types with multiple comparisons,of which five showed no significant differences.At different soil depths,there were significant differences in soil compaction among forest types.The correlation between the degree of soil compaction and depth was positive and significant.The Larix gmelinii—shrub forest type,L.gmelinii—herb forest type,and L.gmelinii—swamp forest type were significantly different in soil compaction according to soil depth.This research indicates that,as a physical property,soil compaction may.
文摘In this paper, a study of sandy soil compaction with different granulometry and moisture content has been performed, and soil mechanical property variations in moisture and granulometry have been investigated. Investigations were performed to compare hydrostatic compression test (HCT) responses and evaluate the compression index, Cc, which is an indicator of the soil's susceptibility to compaction-induced damage. The experiments have been performed on 24 soil samples typologies. Each sample has been obtained by combining three types of soil granulometry (types A, B and C) with a relative content varying from 0% to 100% in 20% increments. Soil type A had a granulometry ranging between 0.5 mm and 1 mm, type B between 0.25 mm and 0.5 mm, and type C less than 0.25 mm. These samples were representative of a sandy soil, chemically inactive and had various granulometries and initial moisture contents. A cell for HCT has been set up to allow the initial volume measurement of the test pieces and the subsequent changes during HCT with an estimated error less than 0.1 cm3. All samples were pre-compacted and prepared in agreement with the actual standards. The experimental data are reported in diagrams, the data allowed comparison of the mechanical behaviors between the considered unsaturated soils and underlined how soil moisture and granulometry affect soil response during HCT. Furthermore, because of the methodology used, the equipment was very economical.
基金supported financially by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28010402)the National Natural Science Foundation of China(Grant No.32101631)the China Postdoctoral Science Foundation of China(Grant No.2022M721976).
文摘While straw mulching has been recognized for mitigating compaction,the multifactorial effects of straw parameters(content,length,laying modes)under static versus dynamic loads remain poorly quantified.Straw mulching may alter the stress transfer in the soil when applying static or dynamic loads.This study systematically evaluated stress and energy dissipation mechanisms using laboratory simulations:a plate sinkage test and an adapted Proctor test.The results demonstrated that the straw content(0-20 Mg/hm^(2))dominantly governs dissipation efficiency,with maximum stress dissipation ratios of 45.6%(static load>200 kPa)and energy dissipation ratios of 38.64%(dynamic high-energy).Longer straw(0.20 m)and ordered laying modes enhanced stress dispersion only under low static loads,while dynamic loads exhibited weaker dissipation.The study reveals that the damping effect of straw is strongest under low stress static load,so it is necessary to reduce the compaction of agricultural machinery and optimize the allocation of straw,such as 15-20 Mg/hm^(2),to alleviate compaction in clay loam soils.These findings can provide actionable insights for designing straw-based soil conservation strategies and improving compaction prediction models in mechanized agriculture.
文摘As important methods to guide the field soil compaction,the standard and modified Proctor tests for laboratory compaction have remained unchanged for decades,which should be improved to better understand the compaction process and the properties of soils.In this study,an accelerometer was installed on a Marshall impact compactor to capture the dynamic response of three types of soils during compaction.The experimental test results indicated that the acceleration curve for each blow gradually evolved to a stable pattern following the progress of compaction,and the impact and gyratory locking points were linearly related with coefficient of determination R2equal to 0.59.The impact compaction curve could be further constructed by filtering the structural resonance,which can be used to quantify the compactability of soil materials.Although each type of soil had a unique set of compaction curves,the slope and value of compaction curve altered accordingly as the moisture content changed for the same soil.In addition,the average acceleration value at the final compaction stage could serve as the target value of soil stiffness.
基金supported by National Natural Science Foundation of China(Grant No.32201671)the 2115 Talent Development Program of China Agricultural University.
文摘Soil compaction leads to crop yield reduction in Northeast of China.The interaction mechanism of driveragricultural machinery-black soil is not clear.A comprehensive field experiment of 4 hm2 of maize seeding was carried out in Baiquan County Cooperative.The results showed that the average increase rates of soil compaction before and after sowing were 118.82%and 71.02%.The SEM showed that waist fatigue had the greatest impact on soil compaction,and the unit fatigue of waist caused 1.51 and 1.27 unit compactions to the soil at the depths of 10 cm and 20 cm.The neck,waist,arm and leg fatigue of drivers increased the surface soil compaction by 1.83,1.76,1.78 and 1.55 units,and the deep soil compaction by 1.65,1.58,1.60 and 1.40 units.The results can provide a reference for the integration of human factor efficiency and conservation tillage.
基金Supported by the National Natural Science Foundation of China (No.50679077)the Knowledge Innovation Programof the Chinese Academy of Sciences (No.KSCX2-YW-N-003)the National Key Technology R&D Program of China(No.2007BAD87B05)
文摘A two-year experiment was carried out on the effect of sprinkler irrigation on the topsoil structure in a winter wheat field. A border-irrigated field was used as the control group. The total soil porosity, pore size distribution, pore shape distribution, soil cracks and soil compaction were measured. The sprinkler irrigation brought significant changes to the total soil porosity, capillary porosity, air-filled porosity and pore shape of topsoil layers in comparison with the border irrigation. The total porosity and air-filled porosity of the topsoil in the sprinkler irrigation were higher than those in the border irrigation. The changes in the air-filled and elongated pores were the main reasons for the changes in total porosity. The porosities of round and irregular pores in topsoil under sprinkler irrigation were lower than those under border irrigation. Sprinkler irrigation produced smaller soil cracks than border irrigation did, so sprinkler irrigation may restrain the development of macropore flow in comparison with border irrigation. The topsoil was looser under sprinkler irrigation than under border irrigation. According to the conditions of topsoil structure, it is preferable for crops to grow under sprinkler irrigation than under border irrigation.
基金Supported by National Maize Industry Technology System(CARS-02-38)Science and Technology Development Project of Jilin Province(LFGC14308)Special Fund for Scientific Research in the Public Interest(201303125-03)
文摘[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water resources. [Method] Three differ- ent loosening treatments for maize in ridges were performed in field trials as fol- lows: conventional ridge tillage, loosening the cm in spring (deep loosening in spring), and depth of 30 cm in autumn (deep loosening in soils between rows to a depth of 30 oosening the soils between rows to a autumn). Then the soil properties and the development of root system were measured to evaluate the effects of different loosening methods. [Result] Soil compactness was significantly reduced after deep loosening in spring, There were significant differences in soil compactness in 0-20 cm depth and soil bulk density in 0-40 cm depth between deep loosening in spring and deep loosening in autumn, deep loosening in spring and conventional ridge tillage. The soil water holding capacity was also significantly different between the two deep loosening treatments and conventional ridge tillage. Moreover, the root ac- tive absorption area of maize of deep loosening in spring was higher than that of conventionai ridge tillage. [Conclusion] Deep loosening can reduce soil compactness, bulk density, and improve soil water holding capacity, soil water content and the root activity of maize. Deep loosening in spring is better in soil improvement be- cause spring is closer to the growth period of crops than autumn. So, deep loosen- ing is conducive to the improvement of soil compactness and structure.
基金The Natural Science Foundation of Jiangsu Province(No. BK2011618)
文摘In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.
文摘Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles.
基金supported by the Innovation Team Pro-gram of Chinese Academy of Sciencesthe Program for Innovative Research Team in University (No IRT0749)
文摘The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 era) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.
文摘The compaction and stress generation on terrain were always investigated based on empirical approaches or testing methods for tire/soil interaction.However,the analysis should be performed for various tires and at different soil strengths.With the increasing capacity of numerical computers and simulation software,finite element modeling of tire/terrain interaction seems a good approach for predicting the effect of change on the parameters.In this work,an elaborated 3D model fully complianning with the geometry of radial tire 115/60R13 was established,using commercial code Solidwork Simulation.The hyper-elastic and incompressible rubber as tire main material was analyzed by Moony-Rivlin model.The Drucker-Prager yield criterion was used to model the soil compaction.Results show that the model realistically predicts the laboratory tests outputs of the modeled tire on the soft soil.
基金financially supported by University of Guilan, Iran
文摘Wood extraction by heavy machinery has always been associated with soil disturbance in mountain forests,and the degree of soil degradation is influenced by several factors,including site and soil characteristics,soil moisture,type of equipment used,and number of machine passes.The effects of ground-based skidding operations on the physical properties of soils with different texture were evaluated at different levels of traffic frequency and trail gradient at two sites in an Iranian temperate forest.The treatments included combinations of three different traffic frequencies(3,8,and 14 passes of a rubber-tired cable skidder),three levels of trail gradient(<10%,10%–20%,and>20%) and two soil texture classes,clay loam(Site 1) and sandy loam(Site 2).The average gravimetric soil moisture at the time of skidding was 23%(Site 1) and 20%(Site 2).The average dry bulk density and total porosity of the undisturbed soil(control) were0.71 g cm-3 and 73.3% at Site 1(clay loam) and 0.86 g cm-3and 59.1% at Site 2(sandy loam),respectively.At site 1(fine-textured soil),rutting began after three passes of the skidder,whereas at site 2(coarse-textured soil),rutting occurred only after eight passes.Independent of the traffic frequency and trail gradient,machine impact on the fine-textured soil caused greater increases in bulk density and rut depth compared to that on the coarse-textured soil.After three skidder passes and independent from trail gradients,dry bulk density at Site 1 increased by 54.8% compared to that of the undisturbed control,and the increase was 45.5% at Site 2.Therefore,medium to fine-textured soils are more susceptible to compaction than coarse-textured soils.Such soils,especially when moist,should be protected using brush mats created from harvesting residues during the forest processing phase.
文摘A study was conducted to investigate the effects of skid trail slope and traffic levels on soil disturbances at two soil depths (0--10 and 10-20 cm). The treatments were set at four traffic levels (2, 7, 12 and 20) two slope classes (〈20% and 〉20%) and two soil depths (0-10 and 10-20 cm). Results show that skidder traffic, longitudinal slope and soil depth have significant effect on soil bulk density in skid trail. Compari- son of average soil bulk density in different traffic levels shows that there are significant differences in average bulk density between different traffic levels and control (p〈0.05). The average bulk densities in different slopes and soil depths are significantly increased with increase in traffic levels, maximized at 12 passes (p〈0.05), but there are no significant differences between 12 and 20 passes. The interaction effects between traffic and soil depth are significant (F005,3=0.109, p〈0.001). For all traffic treatments, there are significant differences in soil moisture con- tent between the two slope classes and the two depths (p〈0.001). However, the interaction effects between traffic levels and slope classes are not significant (p 〉0.05), although skidder traffic and slope affected soil moisture content.
基金supported by the National Natural Science Foundation of China (41271240)
文摘Soil drying may induce a number of stresses on crops. This paper investigated maize(Zea mays L.) root growth as affected by drought and soil penetration resistance(PR), which was caused by soil drying and tillage in a clayey red soil. Compared with conventional tillage(C) and deep tillage(D), soil compaction(P) and no-till(N) significantly increased soil PR in the 0-15 cm layer. The PR increased dramatically as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical profile(0-20 cm) but also in the horizontal layer at the same distance(0-5, 5-10, 10-15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume significantly decreased. Specifically, the maize root length declined exponentially from 309 to 64 cm per plant with an increase in soil PR from 491 to 3 370 k Pa; the roots almost stopped elongating when the soil PR was larger than 2 200 k Pa. It appeared that fine roots(〈2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils.
基金financially supported by the University of Tehran
文摘Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, which is usually neglected, is to avoid mixing organic matter with road materials during excavation and embankment construction. The current study aimed to assess the influence of organic matter on the physical properties and mechanical behaviors of forest soil and to analyze the relation between the amount of organic matter and the behavior of forest soil as road material. A typical soil sample from the study area was collected beside a newly constructed roadbed. The soil was mixed with different percentages of organic matter(control treatment, 5, 10, and 15% by mass) and different tests including Atterberg limits, standard compaction, and California bearing ratio(CBR) tests were conducted on these different soil mixtures. The results showed that soil plasticity increased linearly with increasing organic matter.Increasing the organic matter from 0%(control) to 15%resulted in an increase of 11.64% of the plastic limit and 15.22% of the liquid limit after drying at 110 ℃. Also,increasing the organic matter content reduced the soil maximum dry density and increased the optimum moisture content. Increasing the organic matter from 0 to 15% resulted in an increase of 11.0% of the optimum moisture content and a decrease of 0.29 g/cm;of the maximum dry density. Organic matter decreased the CBR, which is used as the index of road strength. Adding 15% organic matter to the soil resulted in a decrease of the CBR from 15.72 to 4.75%. There was a significant difference between the two drying temperatures(60 and 110 ℃) for the same organic matter mixtures with lower water content values after drying at 60 ℃. The results revealed the adverse influence of organic matter on soil engineering properties and showed the importance of organic matter removal before excavation and fill construction.
文摘Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop.
文摘The crop yield is related to several factors, among these, soil tillage, soil compaction and crop rotation. This study aimed to evaluate the winter cover crops and crop rotation influence on soil physical properties and grain yield of dry beans, maize and soybean for two growing seasons. Three experiments were conducted, corresponding to dry beans, maize and soybean crops. It was used the randomized block design with three treatments and four replications consisted by 3 × 10 m plots. The treatments were: two cover crops systems and crop rotation in no-till, and the control, consisting of winter fallow and conventional tillage. The cover crop dry matter, soil physical properties and grain yield for dry beans, maize and soybean in the two growing seasons were evaluated. Crop rotation systems and cover crops showed a trend to increase maize and soybean yields. Crop rotation in no-till increases soil compaction in the superficial layer compared to conventional tillage, but does not reduce the dry beans, maize and soybean yields.