Software-defined vehicles have been attracting increasing attentions owing to their impacts on the ecosystem of the automo-tive industry in terms of technologies,products,services and enterprise coopetition.Starting f...Software-defined vehicles have been attracting increasing attentions owing to their impacts on the ecosystem of the automo-tive industry in terms of technologies,products,services and enterprise coopetition.Starting from the technology improve-ments of software-defined vehicles,this study systematically combs the impact of software-defined vehicles on the value ecology of automotive products and the automotive industrial pattern.Then,based on the current situation and demand of industrial development,the main challenges hindering the realization of software-defined vehicles are identified,including that traditional research and development models cannot adapt to the iterative demand of new automotive products;the transformation of enterprise capability faces multiple challenges;and many contradictions exist in the industrial division of labor.Finally,suggestions are put forward to address these challenges and provide decision-making recommendations for enterprises on strategy management.展开更多
The revolution of physical structure is highly significant for future software defined vehicles(SDV).Active structural transformation is a promising feature of the next generation of vehicle physical structure.It can ...The revolution of physical structure is highly significant for future software defined vehicles(SDV).Active structural transformation is a promising feature of the next generation of vehicle physical structure.It can enhance the dynamic performance of vehicles,thus providing safer and more comfortable ride experiences,such as the ability to avoid rollover in critical situations.Based on the active structural transformation technology,this study proposes a novel approach to improve the dynamic performance of a vehicle.The first analytical motion model of a vehicle with active structural transformation capability is established.Then,a multi-objective optimization problem with the adjustable parameters as design variables is abstracted and solved with an innovative scenario specific optimization method.Simulation results under different driving scenarios revealed that the active transformable vehicle applying the proposed method could significantly improve the handling stability without sacrificing the ride comfort,compared with a conventional vehicle with a fixed structure.The proposed method pipeline is defined by the software and supported by the hardware.It fully embodies the characteristics of SDV,and inspires the improvement of multiple types of vehicle performance based on the concept of“being defined by software”and the revolution of the physical structure.展开更多
Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees l...Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety.To address these challenges,we introduce HS-APF-RRT*,a novel algorithm that fuses layered sampling,an enhanced Artificial Potential Field(APF),and a dynamic neighborhood-expansion mechanism.First,the workspace is hierarchically partitioned into macro,meso,and micro sampling layers,progressively biasing random samples toward safer,lower-energy regions.Second,we augment the traditional APF by incorporating a slope-dependent repulsive term,enabling stronger avoidance of steep obstacles.Third,a dynamic expansion strategy adaptively switches between 8 and 16 connected neighborhoods based on local obstacle density,striking an effective balance between search efficiency and collision-avoidance precision.In simulated off-road scenarios,HS-APF-RRT*is benchmarked against RRT*,GoalBiased RRT*,and APF-RRT*,and demonstrates significantly faster convergence,lower path-energy consumption,and enhanced safety margins.展开更多
As urban landscapes evolve and vehicular volumes soar,traditional traffic monitoring systems struggle to scale,often failing under the complexities of dense,dynamic,and occluded environments.This paper introduces a no...As urban landscapes evolve and vehicular volumes soar,traditional traffic monitoring systems struggle to scale,often failing under the complexities of dense,dynamic,and occluded environments.This paper introduces a novel,unified deep learning framework for vehicle detection,tracking,counting,and classification in aerial imagery designed explicitly for modern smart city infrastructure demands.Our approach begins with adaptive histogram equalization to optimize aerial image clarity,followed by a cutting-edge scene parsing technique using Mask2Former,enabling robust segmentation even in visually congested settings.Vehicle detection leverages the latest YOLOv11 architecture,delivering superior accuracy in aerial contexts by addressing occlusion,scale variance,and fine-grained object differentiation.We incorporate the highly efficient ByteTrack algorithm for tracking,enabling seamless identity preservation across frames.Vehicle counting is achieved through an unsupervised DBSCAN-based method,ensuring adaptability to varying traffic densities.We further introduce a hybrid feature extraction module combining Convolutional Neural Networks(CNNs)with Zernike Moments,capturing both deep semantic and geometric signatures of vehicles.The final classification is powered by NASNet,a neural architecture search-optimized model,ensuring high accuracy across diverse vehicle types and orientations.Extensive evaluations of the VAID benchmark dataset demonstrate the system’s outstanding performance,achieving 96%detection,94%tracking,and 96.4%classification accuracy.On the UAVDT dataset,the system attains 95%detection,93%tracking,and 95%classification accuracy,confirming its robustness across diverse aerial traffic scenarios.These results establish new benchmarks in aerial traffic analysis and validate the framework’s scalability,making it a powerful and adaptable solution for next-generation intelligent transportation systems and urban surveillance.展开更多
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst...Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.展开更多
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain...Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.展开更多
The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ...The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.展开更多
The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles ar...The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles are connected to the internet through wireless communication technologies,the Internet of Vehicles network infrastructure is susceptible to flooding attacks.Reconfiguring the network infrastructure is difficult as network customization is not possible.As Software Defined Network provide a flexible programming environment for network customization,detecting flooding attacks on the Internet of Vehicles is integrated on top of it.The basic methodology used is crypto-fuzzy rules,in which cryptographic standard is incorporated in the traditional fuzzy rules.In this research work,an intelligent framework for secure transportation is proposed with the basic ideas of security attacks on the Internet of Vehicles integrated with software-defined networking.The intelligent framework is proposed to apply for the smart city application.The proposed cognitive framework is integrated with traditional fuzzy,cryptofuzzy and Restricted Boltzmann Machine algorithm to detect malicious traffic flows in Software-Defined-Internet of Vehicles.It is inferred from the result interpretations that an intelligent framework for secure transportation system achieves better attack detection accuracy with less delay and also prevents buffer overflow attacks.The proposed intelligent framework for secure transportation system is not compared with existing methods;instead,it is tested with crypto and machine learning algorithms.展开更多
The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin...The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.展开更多
The global adoption of Electric Vehicles(EVs)is on the rise due to their advanced features,with projections indicating they will soon dominate the private vehicle market.However,improper management of EV charging can ...The global adoption of Electric Vehicles(EVs)is on the rise due to their advanced features,with projections indicating they will soon dominate the private vehicle market.However,improper management of EV charging can lead to significant issues.This paper reviews the development of high-power,reliable charging solutions by examining the converter topologies used in rectifiers and converters that transfer electricity from the grid to EV batteries.It covers technical details,ongoing developments,and challenges related to these topologies and control strategies.The integration of rapid charging stations has introduced various Power Quality(PQ)issues,such as voltage fluctuations,harmonic distortion,and supra-harmonics,which are discussed in detail.The paper also highlights the benefits of controlled EV charging and discharging,including voltage and frequency regulation,reactive power compensation,and improved power quality.Efficient energy management and control strategies are crucial for optimizing EV battery charging within microgrids to meet increasing demand.Charging stations must adhere to specific converter topologies,control strategies,and industry standards to function correctly.The paper explores microgrid architectures and control strategies that integrate EVs,energy storage units(ESUs),and Renewable Energy Sources(RES)to enhance performance at charging points.It emphasizes the importance of various RES-connected architectures and the latest power converter topologies.Additionally,the paper provides a comparative analysis of microgrid-based charging station architectures,focusing on energy management,control strategies,and charging converter controls.The goal is to offer insights into future research directions in EV charging systems,including architectural considerations,control factors,and their respective advantages and disadvantages.展开更多
In this paper,a novel guidance law is proposed which can achieve the desired impact speed and angle simultaneously for unpowered gliding vehicles.A guidance law with only impact angle constraint is used to produce the...In this paper,a novel guidance law is proposed which can achieve the desired impact speed and angle simultaneously for unpowered gliding vehicles.A guidance law with only impact angle constraint is used to produce the guidance profile,and its convergence in the varying speed scenario is proved.A relationship between flight states,guidance input and impact speed is established.By applying the fixed-time convergence control theory of error dynamics,an impact speed corrector is built with the above guidance profile,which can implement impact speed correction without affecting the impact angle constraint.Numerical simulations with various impact speed and angle constraints are conducted to demonstrate the performance of the proposed guidance law,and the robustness is also verified by Monte Carlo tests.展开更多
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg...The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in...Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.展开更多
Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoti...Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.展开更多
Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision u...Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the v...The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the vicinity of numerical wave tank's boundary was forced towards the wave theoretical solution by incorporating momentum source terms,thereby reducing adverse effects such as wave reflection.Simulations utilizing laminar flow,turbulent flow,and ideal fluid models were all found capable of effectively capturing the waveform and bottom pressure of regular waves,agreeing well with experimental data.In predicting the bottom pressure field of the submerged vehicle,turbulent simulations considering fluid viscosity and boundary layer development provided more accurate predictions for the stern region than inviscid simulations.Due to sphere's diffractive effect,the sphere's bottom pressure field in waves is not a linear superposition of the wave's and the sphere's bottom pressure field.However,a slender submerged vehicle exhibits a weaker diffractive effect on waves,thus the submerged vehicle's bottom pressure field in waves can be approximated as a linear superposition of the wave's and the submerged vehicle's bottom pressure field,which simplifies computation and analysis.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
基金This work was supported by National Natural Science Foundation of China(U1764265).
文摘Software-defined vehicles have been attracting increasing attentions owing to their impacts on the ecosystem of the automo-tive industry in terms of technologies,products,services and enterprise coopetition.Starting from the technology improve-ments of software-defined vehicles,this study systematically combs the impact of software-defined vehicles on the value ecology of automotive products and the automotive industrial pattern.Then,based on the current situation and demand of industrial development,the main challenges hindering the realization of software-defined vehicles are identified,including that traditional research and development models cannot adapt to the iterative demand of new automotive products;the transformation of enterprise capability faces multiple challenges;and many contradictions exist in the industrial division of labor.Finally,suggestions are put forward to address these challenges and provide decision-making recommendations for enterprises on strategy management.
基金sponsored in part by the NSFC Program(61872217,U20A20285,52122217,52221005,U1801263)in part by the National Key R&D Program of China(2020YFB1710901,2018YFB1308601)in part by the Jiangxi Provincial Natural Science Foundation under Grant 20224ACB218002.
文摘The revolution of physical structure is highly significant for future software defined vehicles(SDV).Active structural transformation is a promising feature of the next generation of vehicle physical structure.It can enhance the dynamic performance of vehicles,thus providing safer and more comfortable ride experiences,such as the ability to avoid rollover in critical situations.Based on the active structural transformation technology,this study proposes a novel approach to improve the dynamic performance of a vehicle.The first analytical motion model of a vehicle with active structural transformation capability is established.Then,a multi-objective optimization problem with the adjustable parameters as design variables is abstracted and solved with an innovative scenario specific optimization method.Simulation results under different driving scenarios revealed that the active transformable vehicle applying the proposed method could significantly improve the handling stability without sacrificing the ride comfort,compared with a conventional vehicle with a fixed structure.The proposed method pipeline is defined by the software and supported by the hardware.It fully embodies the characteristics of SDV,and inspires the improvement of multiple types of vehicle performance based on the concept of“being defined by software”and the revolution of the physical structure.
基金supported in part by 14th Five Year National Key R&D Program Project(Project Number:2023YFB3211001)the National Natural Science Foundation of China(62273339,U24A201397).
文摘Rapidly-exploring Random Tree(RRT)and its variants have become foundational in path-planning research,yet in complex three-dimensional off-road environments their uniform blind sampling and limited safety guarantees lead to slow convergence and force an unfavorable trade-off between path quality and traversal safety.To address these challenges,we introduce HS-APF-RRT*,a novel algorithm that fuses layered sampling,an enhanced Artificial Potential Field(APF),and a dynamic neighborhood-expansion mechanism.First,the workspace is hierarchically partitioned into macro,meso,and micro sampling layers,progressively biasing random samples toward safer,lower-energy regions.Second,we augment the traditional APF by incorporating a slope-dependent repulsive term,enabling stronger avoidance of steep obstacles.Third,a dynamic expansion strategy adaptively switches between 8 and 16 connected neighborhoods based on local obstacle density,striking an effective balance between search efficiency and collision-avoidance precision.In simulated off-road scenarios,HS-APF-RRT*is benchmarked against RRT*,GoalBiased RRT*,and APF-RRT*,and demonstrates significantly faster convergence,lower path-energy consumption,and enhanced safety margins.
基金funded by the Open Access Initiative of the University of Bremen and the DFG via SuUB BremenThe authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Group Project under grant number(RGP2/367/46)+1 种基金This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘As urban landscapes evolve and vehicular volumes soar,traditional traffic monitoring systems struggle to scale,often failing under the complexities of dense,dynamic,and occluded environments.This paper introduces a novel,unified deep learning framework for vehicle detection,tracking,counting,and classification in aerial imagery designed explicitly for modern smart city infrastructure demands.Our approach begins with adaptive histogram equalization to optimize aerial image clarity,followed by a cutting-edge scene parsing technique using Mask2Former,enabling robust segmentation even in visually congested settings.Vehicle detection leverages the latest YOLOv11 architecture,delivering superior accuracy in aerial contexts by addressing occlusion,scale variance,and fine-grained object differentiation.We incorporate the highly efficient ByteTrack algorithm for tracking,enabling seamless identity preservation across frames.Vehicle counting is achieved through an unsupervised DBSCAN-based method,ensuring adaptability to varying traffic densities.We further introduce a hybrid feature extraction module combining Convolutional Neural Networks(CNNs)with Zernike Moments,capturing both deep semantic and geometric signatures of vehicles.The final classification is powered by NASNet,a neural architecture search-optimized model,ensuring high accuracy across diverse vehicle types and orientations.Extensive evaluations of the VAID benchmark dataset demonstrate the system’s outstanding performance,achieving 96%detection,94%tracking,and 96.4%classification accuracy.On the UAVDT dataset,the system attains 95%detection,93%tracking,and 95%classification accuracy,confirming its robustness across diverse aerial traffic scenarios.These results establish new benchmarks in aerial traffic analysis and validate the framework’s scalability,making it a powerful and adaptable solution for next-generation intelligent transportation systems and urban surveillance.
基金supported by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(C)23K03898.
文摘Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.
基金supported by Key Science and Technology Program of Henan Province,China(Grant Nos.242102210147,242102210027)Fujian Province Young and Middle aged Teacher Education Research Project(Science and Technology Category)(No.JZ240101)(Corresponding author:Dong Yuan).
文摘Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.
基金supported in part by National Natural Science Foundation of China (No.61401331,No.61401328)111 Project in Xidian University of China(B08038)+2 种基金Hong Kong,Macao and Taiwan Science and Technology Cooperation Special Project (2014DFT10320,2015DFT10160)The National Science and Technology Major Project of the Ministry of Science and Technology of China(2015zx03002006-003)FundamentalResearch Funds for the Central Universities (20101155739)
文摘The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.
文摘The Internet of Things plays a predominant role in automating all real-time applications.One such application is the Internet of Vehicles which monitors the roadside traffic for automating traffic rules.As vehicles are connected to the internet through wireless communication technologies,the Internet of Vehicles network infrastructure is susceptible to flooding attacks.Reconfiguring the network infrastructure is difficult as network customization is not possible.As Software Defined Network provide a flexible programming environment for network customization,detecting flooding attacks on the Internet of Vehicles is integrated on top of it.The basic methodology used is crypto-fuzzy rules,in which cryptographic standard is incorporated in the traditional fuzzy rules.In this research work,an intelligent framework for secure transportation is proposed with the basic ideas of security attacks on the Internet of Vehicles integrated with software-defined networking.The intelligent framework is proposed to apply for the smart city application.The proposed cognitive framework is integrated with traditional fuzzy,cryptofuzzy and Restricted Boltzmann Machine algorithm to detect malicious traffic flows in Software-Defined-Internet of Vehicles.It is inferred from the result interpretations that an intelligent framework for secure transportation system achieves better attack detection accuracy with less delay and also prevents buffer overflow attacks.The proposed intelligent framework for secure transportation system is not compared with existing methods;instead,it is tested with crypto and machine learning algorithms.
基金supported by Southern Marine Science and Engineering Guangdong Laboratory Grant No.SML2023SP229。
文摘The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.
文摘The global adoption of Electric Vehicles(EVs)is on the rise due to their advanced features,with projections indicating they will soon dominate the private vehicle market.However,improper management of EV charging can lead to significant issues.This paper reviews the development of high-power,reliable charging solutions by examining the converter topologies used in rectifiers and converters that transfer electricity from the grid to EV batteries.It covers technical details,ongoing developments,and challenges related to these topologies and control strategies.The integration of rapid charging stations has introduced various Power Quality(PQ)issues,such as voltage fluctuations,harmonic distortion,and supra-harmonics,which are discussed in detail.The paper also highlights the benefits of controlled EV charging and discharging,including voltage and frequency regulation,reactive power compensation,and improved power quality.Efficient energy management and control strategies are crucial for optimizing EV battery charging within microgrids to meet increasing demand.Charging stations must adhere to specific converter topologies,control strategies,and industry standards to function correctly.The paper explores microgrid architectures and control strategies that integrate EVs,energy storage units(ESUs),and Renewable Energy Sources(RES)to enhance performance at charging points.It emphasizes the importance of various RES-connected architectures and the latest power converter topologies.Additionally,the paper provides a comparative analysis of microgrid-based charging station architectures,focusing on energy management,control strategies,and charging converter controls.The goal is to offer insights into future research directions in EV charging systems,including architectural considerations,control factors,and their respective advantages and disadvantages.
基金supported by the National Natural Science Foundation of China(No.52175214)。
文摘In this paper,a novel guidance law is proposed which can achieve the desired impact speed and angle simultaneously for unpowered gliding vehicles.A guidance law with only impact angle constraint is used to produce the guidance profile,and its convergence in the varying speed scenario is proved.A relationship between flight states,guidance input and impact speed is established.By applying the fixed-time convergence control theory of error dynamics,an impact speed corrector is built with the above guidance profile,which can implement impact speed correction without affecting the impact angle constraint.Numerical simulations with various impact speed and angle constraints are conducted to demonstrate the performance of the proposed guidance law,and the robustness is also verified by Monte Carlo tests.
基金supported by Jiangsu Provincial Science and Technology Project,grant number J2023124.Jing Guo received this grant,the URLs of sponsors’website is https://kxjst.jiangsu.gov.cn/(accessed on 06 June 2024).
文摘The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by a Korean Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure and Transport(grant no.RS-2023-00239464).
文摘Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0102)the China Scholarship Council Program(202406190114)。
文摘Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.
基金co-supported by the National Natural Science Foundation of China(No.62103432)the China Postdoctoral Science Foundation(No.284881)the Young Talent fund of University Association for Science and Technology in Shaanxi,China(No.20210108)。
文摘Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
文摘The finite volume method was applied to numerically simulate the bottom pressure field induced by regular waves,vehicles in calm water and vehicles in regular waves.The solution of Navier-Stokes(N-S)equations in the vicinity of numerical wave tank's boundary was forced towards the wave theoretical solution by incorporating momentum source terms,thereby reducing adverse effects such as wave reflection.Simulations utilizing laminar flow,turbulent flow,and ideal fluid models were all found capable of effectively capturing the waveform and bottom pressure of regular waves,agreeing well with experimental data.In predicting the bottom pressure field of the submerged vehicle,turbulent simulations considering fluid viscosity and boundary layer development provided more accurate predictions for the stern region than inviscid simulations.Due to sphere's diffractive effect,the sphere's bottom pressure field in waves is not a linear superposition of the wave's and the sphere's bottom pressure field.However,a slender submerged vehicle exhibits a weaker diffractive effect on waves,thus the submerged vehicle's bottom pressure field in waves can be approximated as a linear superposition of the wave's and the submerged vehicle's bottom pressure field,which simplifies computation and analysis.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.