Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic info...Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic information in the network. Therefore, the controllers can only optimize the network latency of applications. However, the serving latency of applications is also an important factor in delivered user-experience for arrival requests. Unintelligent request routing will cause large serving latency if arrival requests are allocated to overloaded virtual machines. To deal with the request routing problem, this paper proposes the workload-aware software-defined networking controller architecture. Then, request routing algorithms are proposed to minimize the total round trip time for every type of request by considering the congestion in the network and the workload in virtual machines(VMs). This paper finally provides the evaluation of the proposed algorithms in a simulated prototype. The simulation results show that the proposed methodology is efficient compared with the existing approaches.展开更多
New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and hete...New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.展开更多
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t...Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.展开更多
In a data center network (DCN), load balancing is required when servers transfer data on the same path. This is necessary to avoid congestion. Load balancing is challenged by the dynamic transferral of demands and c...In a data center network (DCN), load balancing is required when servers transfer data on the same path. This is necessary to avoid congestion. Load balancing is challenged by the dynamic transferral of demands and complex routing control. Because of the distributed nature of a traditional network, previous research on load balancing has mostly focused on improving the performance of the local network; thus, the load has not been optimally balanced across the entire network. In this paper, we propose a novel dynamic load-balancing algorithm for fat-tree. This algorithm avoids congestions to the great possible extent by searching for non-conflicting paths in a centralized way. We implement the algorithm in the popular software-defined networking architecture and evaluate the algorithm' s performance on the Mininet platform. The results show that our algorithm has higher bisection band- width than the traditional equal-cost multi-path load-balancing algorithm and thus more effectively avoids congestion.展开更多
According to Cisco’s Internet Report 2020 white paper,there will be 29.3 billion connected devices worldwide by 2023,up from 18.4 billion in 2018.5G connections will generate nearly three times more traffic than 4G c...According to Cisco’s Internet Report 2020 white paper,there will be 29.3 billion connected devices worldwide by 2023,up from 18.4 billion in 2018.5G connections will generate nearly three times more traffic than 4G connections.While bringing a boom to the network,it also presents unprecedented challenges in terms of flow forwarding decisions.The path assignment mechanism used in traditional traffic schedulingmethods tends to cause local network congestion caused by the concentration of elephant flows,resulting in unbalanced network load and degraded quality of service.Using the centralized control of software-defined networks,this study proposes a data center traffic scheduling strategy for minimization congestion and quality of service guaranteeing(MCQG).The ideal transmission path is selected for data flows while considering the network congestion rate and quality of service.Different traffic scheduling strategies are used according to the characteristics of different service types in data centers.Reroute scheduling for elephant flows that tend to cause local congestion.The path evaluation function is formed by the maximum link utilization on the path,the number of elephant flows and the time delay,and the fast merit-seeking capability of the sparrow search algorithm is used to find the path with the lowest actual link overhead as the rerouting path for the elephant flows.It is used to reduce the possibility of local network congestion occurrence.Equal cost multi-path(ECMP)protocols with faster response time are used to schedulemouse flows with shorter duration.Used to guarantee the quality of service of the network.To achieve isolated transmission of various types of data streams.The experimental results show that the proposed strategy has higher throughput,better network load balancing,and better robustness compared to ECMP under different traffic models.In addition,because it can fully utilize the resources in the network,MCQG also outperforms another traffic scheduling strategy that does rerouting for elephant flows(namely Hedera).Compared withECMPandHedera,MCQGimproves average throughput by 11.73%and 4.29%,and normalized total throughput by 6.74%and 2.64%,respectively;MCQG improves link utilization by 23.25%and 15.07%;in addition,the average round-trip delay and packet loss rate fluctuate significantly less than the two compared strategies.展开更多
With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of sof...With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of software-defined network(SDN)technology has brought revolutionary changes to modern network management.This paper aims to discuss the application and prospects of SDN technology in modern network management.Firstly,the basic principle and architecture of SDN are introduced,including the separation of control plane and data plane,centralized control and open programmable interface.Then,it analyzes the advantages of SDN technology in network management,such as simplifying network configuration,improving network flexibility,optimizing network resource utilization,and realizing fast fault recovery.The application examples of SDN in data center networks and WAN optimization management are analyzed.This paper also discusses the development status and trend of SDN in enterprise networks,including the integration of technologies such as cloud computing,big data,and artificial intelligence,the construction of an intelligent and automated network management platform,the improvement of network management efficiency and quality,and the openness and interoperability of network equipment.Finally,the advantages and challenges of SDN technology are summarized,and its future development direction is provided.展开更多
Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the perform...Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the performance of deployed services. In this paper, we propose MAMOC, a cost-effective approach for selecting the server and migrating services to attain enhanced QoS more econom- ically. The goal of MAMOC is to minimize the total operating cost while guaranteeing the constraints of resource de- mands, storage capacity, access latency and economies, including selling price and reputation grade. First, we devise an objective optimal model with multi-constraints, describing the relationship among operating cost and the above con- straints. Second, a normalized method is adopted to calculate the operating cost for each candidate VM. Then we give a de- tailed presentation on the online algorithm MAMOC, which determines the optimal server. To evaluate the performance of our proposal, we conducted extensive simulations on three typical network topologies and a realistic data center net- work. Results show that MAMOC is scalable and robust with the larger scales of requests and VMs in cloud environment. Moreover, MAMOC decreases the competitive ratio by identifying the optimal migration paths, while ensuring the constraints of SLA as satisfying as possible.展开更多
基金supported by the National Postdoctoral Science Foundation of China(2014M550068)
文摘Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic information in the network. Therefore, the controllers can only optimize the network latency of applications. However, the serving latency of applications is also an important factor in delivered user-experience for arrival requests. Unintelligent request routing will cause large serving latency if arrival requests are allocated to overloaded virtual machines. To deal with the request routing problem, this paper proposes the workload-aware software-defined networking controller architecture. Then, request routing algorithms are proposed to minimize the total round trip time for every type of request by considering the congestion in the network and the workload in virtual machines(VMs). This paper finally provides the evaluation of the proposed algorithms in a simulated prototype. The simulation results show that the proposed methodology is efficient compared with the existing approaches.
文摘New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.
基金This work was supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.
基金supported by the National Basic Research Program of China(973 Program)(2012CB315903)the Key Science and Technology Innovation Team Project of Zhejiang Province(2011R50010-05)+3 种基金the National Science and Technology Support Program(2014BAH24F01)863 Program of China(2012AA01A507)the National Natural Science Foundation of China(61379118 and 61103200)sponsored by the Research Fund of ZTE Corporation
文摘In a data center network (DCN), load balancing is required when servers transfer data on the same path. This is necessary to avoid congestion. Load balancing is challenged by the dynamic transferral of demands and complex routing control. Because of the distributed nature of a traditional network, previous research on load balancing has mostly focused on improving the performance of the local network; thus, the load has not been optimally balanced across the entire network. In this paper, we propose a novel dynamic load-balancing algorithm for fat-tree. This algorithm avoids congestions to the great possible extent by searching for non-conflicting paths in a centralized way. We implement the algorithm in the popular software-defined networking architecture and evaluate the algorithm' s performance on the Mininet platform. The results show that our algorithm has higher bisection band- width than the traditional equal-cost multi-path load-balancing algorithm and thus more effectively avoids congestion.
基金This work is funded by the National Natural Science Foundation of China under Grant No.61772180the Key R&D plan of Hubei Province(2020BHB004,2020BAB012).
文摘According to Cisco’s Internet Report 2020 white paper,there will be 29.3 billion connected devices worldwide by 2023,up from 18.4 billion in 2018.5G connections will generate nearly three times more traffic than 4G connections.While bringing a boom to the network,it also presents unprecedented challenges in terms of flow forwarding decisions.The path assignment mechanism used in traditional traffic schedulingmethods tends to cause local network congestion caused by the concentration of elephant flows,resulting in unbalanced network load and degraded quality of service.Using the centralized control of software-defined networks,this study proposes a data center traffic scheduling strategy for minimization congestion and quality of service guaranteeing(MCQG).The ideal transmission path is selected for data flows while considering the network congestion rate and quality of service.Different traffic scheduling strategies are used according to the characteristics of different service types in data centers.Reroute scheduling for elephant flows that tend to cause local congestion.The path evaluation function is formed by the maximum link utilization on the path,the number of elephant flows and the time delay,and the fast merit-seeking capability of the sparrow search algorithm is used to find the path with the lowest actual link overhead as the rerouting path for the elephant flows.It is used to reduce the possibility of local network congestion occurrence.Equal cost multi-path(ECMP)protocols with faster response time are used to schedulemouse flows with shorter duration.Used to guarantee the quality of service of the network.To achieve isolated transmission of various types of data streams.The experimental results show that the proposed strategy has higher throughput,better network load balancing,and better robustness compared to ECMP under different traffic models.In addition,because it can fully utilize the resources in the network,MCQG also outperforms another traffic scheduling strategy that does rerouting for elephant flows(namely Hedera).Compared withECMPandHedera,MCQGimproves average throughput by 11.73%and 4.29%,and normalized total throughput by 6.74%and 2.64%,respectively;MCQG improves link utilization by 23.25%and 15.07%;in addition,the average round-trip delay and packet loss rate fluctuate significantly less than the two compared strategies.
文摘With the rapid development of information technology,the scale of the network is expanding,and the complexity is increasing day by day.The traditional network management is facing great challenges.The emergence of software-defined network(SDN)technology has brought revolutionary changes to modern network management.This paper aims to discuss the application and prospects of SDN technology in modern network management.Firstly,the basic principle and architecture of SDN are introduced,including the separation of control plane and data plane,centralized control and open programmable interface.Then,it analyzes the advantages of SDN technology in network management,such as simplifying network configuration,improving network flexibility,optimizing network resource utilization,and realizing fast fault recovery.The application examples of SDN in data center networks and WAN optimization management are analyzed.This paper also discusses the development status and trend of SDN in enterprise networks,including the integration of technologies such as cloud computing,big data,and artificial intelligence,the construction of an intelligent and automated network management platform,the improvement of network management efficiency and quality,and the openness and interoperability of network equipment.Finally,the advantages and challenges of SDN technology are summarized,and its future development direction is provided.
文摘Cloud computing as an emerging technology promises to provide reliable and available services on de- mand. However, offering services for mobile requirements without dynamic and adaptive migration may hurt the performance of deployed services. In this paper, we propose MAMOC, a cost-effective approach for selecting the server and migrating services to attain enhanced QoS more econom- ically. The goal of MAMOC is to minimize the total operating cost while guaranteeing the constraints of resource de- mands, storage capacity, access latency and economies, including selling price and reputation grade. First, we devise an objective optimal model with multi-constraints, describing the relationship among operating cost and the above con- straints. Second, a normalized method is adopted to calculate the operating cost for each candidate VM. Then we give a de- tailed presentation on the online algorithm MAMOC, which determines the optimal server. To evaluate the performance of our proposal, we conducted extensive simulations on three typical network topologies and a realistic data center net- work. Results show that MAMOC is scalable and robust with the larger scales of requests and VMs in cloud environment. Moreover, MAMOC decreases the competitive ratio by identifying the optimal migration paths, while ensuring the constraints of SLA as satisfying as possible.