期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Software Risk Analysis Model Using Bayesian Belief Network 被引量:1
1
作者 Yong Hu Juhua Chen +2 位作者 Mei Liu Xang Yun Junbiao Tang 《南昌工程学院学报》 CAS 2006年第2期102-106,共5页
The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on fa... The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project,we can reduce the risk. Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table.In this paper,we built up network structure by Delphi method for conditional probability table learning,and learn update probability table and nodes’confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately.This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects. 展开更多
关键词 software risk analysis Bayesian Belief Network EM algorithm parameter learning
在线阅读 下载PDF
Research on Application of Enhanced Neural Networks in Software Risk Analysis
2
作者 Zhenbang Rong Juhua Chen +1 位作者 Mei Liu Yong Hu 《南昌工程学院学报》 CAS 2006年第2期112-116,121,共6页
This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity ... This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity in software risks, the method of principal components analysis is adopted in the model to enhance network stability.To solve uncertainty of the neural networks structure and the uncertainty of the initial weights, genetic algorithms is employed.The experimental result reveals that the precision of software risk analysis can be improved by using the erhanced neural networks model. 展开更多
关键词 software risk analysis principal components analysis back propagation neural networks genetic algorithms
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部