期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Transfer learning: A new aerodynamic force identification network based on adaptive EMD and soft thresholding in hypersonic wind tunnel 被引量:4
1
作者 Yi SUN Shichao LI +4 位作者 Hongli GAO Xiaoqing ZHANG Jinzhou LV Weixiong LIU Yingchuan WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期351-365,共15页
The aerodynamic test in the pulse combustion wind tunnel is very important for the design, evaluation and optimization of aerodynamic characteristics of the hypersonic aircraft.The test accuracy even affects the succe... The aerodynamic test in the pulse combustion wind tunnel is very important for the design, evaluation and optimization of aerodynamic characteristics of the hypersonic aircraft.The test accuracy even affects the success or failure of hypersonic aircraft development. In the aerodynamic test of pulse combustion wind tunnel, the aerodynamic signal is disturbed by the inertial force signal, which seriously affects the test accuracy of aerodynamic force. Aiming at the above problems, this paper innovatively proposes an aerodynamic intelligent identification method, that is the transfer learning network based on adaptive Empirical Modal Decomposition(EMD) and Soft Thresholding(TLN-AE&ST). Compared with the existing aerodynamic intelligent identification model based on deep learning technology, this study introduces the transfer learning idea into the aerodynamic intelligent identification model for the first time. The TLN-AE&ST effectively alleviates the problem of scarcity of training samples for intelligent models due to the high cost of wind tunnel tests, and provides a new idea for further implementation of deep learning technology in the field of wind tunnel aerodynamic testing. And this study designed residual attention block with soft threshold and dense block with adaptive EMD in TLN-AE&ST model. Residual attention block with soft threshold module can more effectively suppress the influence of instrument noise signal on model training effect. Dense block with adaptive EMD makes the deep learning model no longer a black box to a certain extent, and has certain physical significance. Finally, a series of wind tunnel tests were carried out in the Φ = 2.4 m pulse combustion wind tunnel of China Aerodynamic Research and Development Center to verify the effectiveness of TLN-AE&ST. 展开更多
关键词 Aerodynamic intelligent identification model Transferlearning Force measurement system Residual attentionblock with softthreshold Denseblockwithadaptive EMD
原文传递
基于小波去噪和随机子空间算法的广域低频振荡估计 被引量:1
2
作者 刘畅 李长松 +1 位作者 李华强 许海青 《四川电力技术》 2014年第1期5-9,共5页
电网规模的日益扩大使得广域低频振荡成为电力系统稳定运行中备受关注的问题之一,提出了一种利用小波软阈值去噪技术,首先对电力系统低频振荡数据进行预处理,然后采用随机子空间算法提取低频振荡信号特征的分析方法。该方法直接利用在... 电网规模的日益扩大使得广域低频振荡成为电力系统稳定运行中备受关注的问题之一,提出了一种利用小波软阈值去噪技术,首先对电力系统低频振荡数据进行预处理,然后采用随机子空间算法提取低频振荡信号特征的分析方法。该方法直接利用在线量测数据识别出系统的低频振荡及其特征参数,有效地克服Prony算法、自回归滑动平均算法及希尔伯特-黄等算法受噪声、系统实际阶数的影响大以及单一随机子空间辨识算法难以处理非线性、非平稳振荡信号的缺点。数值仿真及实例分析均验证了基于小波预处理技术的随机子空间算法在电力系统低频振荡分析中的可行性。 展开更多
关键词 电力系统 低频振荡 区间振荡 随机子空间算法 小波软阈值 去噪
在线阅读 下载PDF
最大似然估计阈值法对超声回波消噪的研究
3
作者 张小丽 梁波 《许昌学院学报》 CAS 2008年第5期58-60,共3页
针对超声脉冲信号具有的概率密度稀疏分布特性,提出了基于离散小波变换的最大似然估计阈值处理法,并与现有的软阈值处理消噪相比较,表明该方法效果良好.
关键词 离散小波变换 最大似然估计 软阈值 概率密度 稀疏分布
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部