In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the elec...In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.展开更多
Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that ...Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that for a mold with 12 segments, the meniscus shape is relatively stable. With increasing power input, the menis- cus height increases with intensification of fluctuation. For the given caster, the reasonable power input is about 70 kW. The coil should be near to the top of mold and/or the initial meniscus should be near to the center of the coil. The lower the frequency, the higher is the meniscus height. With increasing frequency, the free surface is more flattened and meniscus becomes more stable. In practice, the power input should be increased simultaneously with frequency. The optimal frequency is about 20 kHz.展开更多
To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure paramet...To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 ram, the reasonable slit number, width, and length are about 24--32, 0. 5--1.0 mm, and 160 mm, respectively.展开更多
The paper introduces the research and new development on soft-contacting electromagnetic continuous casting in Baosteel.At the year of 2008,Baosteel successfully completed the carbon steel SCEMCC industrial experiment...The paper introduces the research and new development on soft-contacting electromagnetic continuous casting in Baosteel.At the year of 2008,Baosteel successfully completed the carbon steel SCEMCC industrial experiment in a 6-strand curved type round billet caster.At the year of 2011,Baosteel selected another 3-strand curved billet caster. Baosteel successfully developed the SCEMCC mold for the first time to do the industrial production experiment for stainless steel round billet continuous casting.Then,in the same stainless steel caster,the square billet SCEMCC mold was successfully developed too.And at the beginning of the year 2012,the square billet SCEMCC of SUS304 and SUS303Cu was implemented up to now.It was proved the machine system was reliable for the long time production.The industrial experimental result shows the soft-contacting electromagnetic continuous casting can reduce the depth of oscillation mark from about 0.7mm to near zero.The SCEMCC billets without surface grinding were transferred to mill tubes,of which the quality is satisfied.展开更多
A two-dimensional axisymmetric finite element model for stress distribution of billet in electromagnetic soft-contact continuous casting mould was established by a two-way coupled method.The contact state between soli...A two-dimensional axisymmetric finite element model for stress distribution of billet in electromagnetic soft-contact continuous casting mould was established by a two-way coupled method.The contact state between solidified shell and mould was described to simulate the thermal-mechanical behaviors in the soft-contact mould.And the effects of frequencies and currents on stress distribution of billet had been discussed and analyzed.The results show that the equivalent stress of initial solidification shell both at its outer and inner surface decreases but at the bottom the equivalent stress of two sides of shell both increases when the current intensity is 1600 A,and the frequency is 20 kHz,compared with the status of conventional continuous casting.展开更多
Electromagnetic casting technology became maturity and gained wide applications in steel-making and aluminum casting, which is still immature in copper casting. Electromagnetic continuous casting with soft-contact mol...Electromagnetic casting technology became maturity and gained wide applications in steel-making and aluminum casting, which is still immature in copper casting. Electromagnetic continuous casting with soft-contact mold was employed to produce copper round billet with high density. At the same time, in this paper, a mathematical model of the electromagnetic field in the soft-contact mold was built on the base of the vector potential method, then it was solved by the ANSYS commercial FEM software. Current and frequency was altered in the course of operation so as to find out how they effect the magnetic field distributing. Its accuracy was verified by the measurement result of the electromagnetic field in the mold without billet. By this model, the effect of excitation current on field was gained, which set up a certainty foundation for more research.展开更多
Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanoge...Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanogenerators(TENGs) have gained significant attention for harvesting waveenergy with high efficiency. This study presents a novelellipsoidal, pendulum-like TENG integrating both liquid-liquid(L-L) and solid-solid (S-S) triboelectricity (LS-TENG). Thisinnovative design enables continuous wave energy harvestingand self-powered marine environment monitoring under variousconditions, including temperature, humidity, and light intensity. The binary immiscible liquids within the LS-TENG’s innersoft balloon create dynamic, and self-adjustable L-L contact interfaces, significantly increasing the L-L contact area andenhancing L-L contact electrification (CE). The unique self-adaptive, soft S-S contact increases the S-S contact areacompared to traditional hard point contact, better adapting to the irregular movements of waves and promoting efficient S-SCE. The LS-TENG achieves highly efficient wave energy harvesting by coupling L-L and S-S CE. Furthermore, the uniquesoft contact design protects the S-S interfaces from mechanical wear and damage during long-term work. The LS-TENG’snovel structure provides an innovative and effective way for water wave energy harvesting.展开更多
Epidermal electronic systems feature physical properties that approximate those of the skin,to enable intimate,long-lived skin interfaces for physiological measurements,human–machine interfaces and other applications...Epidermal electronic systems feature physical properties that approximate those of the skin,to enable intimate,long-lived skin interfaces for physiological measurements,human–machine interfaces and other applications that cannot be addressed by wearable hardware that is commercially available today.A primary challenge is power supply;the physical bulk,large mass and high mechanical modulus associated with conventional battery technologies can hinder efforts to achieve epidermal characteristics,and near-field power transfer schemes offer only a limited operating distance.Here we introduce an epidermal,farfield radio frequency(RF)power harvester built using a modularized collection of ultrathin antennas,rectifiers and voltage doublers.These components,separately fabricated and tested,can be integrated together via methods involving soft contact lamination.Systematic studies of the individual components and the overall performance in various dielectric environments highlight the key operational features of these systems and strategies for their optimization.The results suggest robust capabilities for battery-free RF power,with relevance to many emerging epidermal technologies.展开更多
文摘In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.
文摘Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that for a mold with 12 segments, the meniscus shape is relatively stable. With increasing power input, the menis- cus height increases with intensification of fluctuation. For the given caster, the reasonable power input is about 70 kW. The coil should be near to the top of mold and/or the initial meniscus should be near to the center of the coil. The lower the frequency, the higher is the meniscus height. With increasing frequency, the free surface is more flattened and meniscus becomes more stable. In practice, the power input should be increased simultaneously with frequency. The optimal frequency is about 20 kHz.
基金Item Sponsored by National Natural Science Foundation of China(50274203)National High Technology Research and Development Program of China(2001AA337040)
文摘To design a power source system and mold for electromagnetic soft-contact continuous casting process and to theoretically estimate the heat losses from the charges and the system power, the effect of structure parameters on system power and magnetic flux density distribution was calculated using finite element method. The results show that as for electromagnetic soft-contact continuous casting system with partial-segment type mold, the power consumption is much more than that with a full-segment type mold; about 62% of electric power is dissipated in the mold, and the effective acting range of magnetic field is relatively narrow. Optimizing mold structure is a crucial measure of remarkably reducing mold power consumption and saving electric energy. Increasing slit number, width, and length can remarkably increase the magnetic flux density in the mold and can reduce the electric energy consumption. Among structure parameters, slit number and slit width are relatively more effective to reduce energy consumption. For a round billet electromagnetic continuous casting system with diameter of 178 ram, the reasonable slit number, width, and length are about 24--32, 0. 5--1.0 mm, and 160 mm, respectively.
文摘The paper introduces the research and new development on soft-contacting electromagnetic continuous casting in Baosteel.At the year of 2008,Baosteel successfully completed the carbon steel SCEMCC industrial experiment in a 6-strand curved type round billet caster.At the year of 2011,Baosteel selected another 3-strand curved billet caster. Baosteel successfully developed the SCEMCC mold for the first time to do the industrial production experiment for stainless steel round billet continuous casting.Then,in the same stainless steel caster,the square billet SCEMCC mold was successfully developed too.And at the beginning of the year 2012,the square billet SCEMCC of SUS304 and SUS303Cu was implemented up to now.It was proved the machine system was reliable for the long time production.The industrial experimental result shows the soft-contacting electromagnetic continuous casting can reduce the depth of oscillation mark from about 0.7mm to near zero.The SCEMCC billets without surface grinding were transferred to mill tubes,of which the quality is satisfied.
基金Item Sponsored by National Natural Science Foundation of China[No.50834009]Key Grant Project of China Ministry of Education (No.311014)
文摘A two-dimensional axisymmetric finite element model for stress distribution of billet in electromagnetic soft-contact continuous casting mould was established by a two-way coupled method.The contact state between solidified shell and mould was described to simulate the thermal-mechanical behaviors in the soft-contact mould.And the effects of frequencies and currents on stress distribution of billet had been discussed and analyzed.The results show that the equivalent stress of initial solidification shell both at its outer and inner surface decreases but at the bottom the equivalent stress of two sides of shell both increases when the current intensity is 1600 A,and the frequency is 20 kHz,compared with the status of conventional continuous casting.
文摘Electromagnetic casting technology became maturity and gained wide applications in steel-making and aluminum casting, which is still immature in copper casting. Electromagnetic continuous casting with soft-contact mold was employed to produce copper round billet with high density. At the same time, in this paper, a mathematical model of the electromagnetic field in the soft-contact mold was built on the base of the vector potential method, then it was solved by the ANSYS commercial FEM software. Current and frequency was altered in the course of operation so as to find out how they effect the magnetic field distributing. Its accuracy was verified by the measurement result of the electromagnetic field in the mold without billet. By this model, the effect of excitation current on field was gained, which set up a certainty foundation for more research.
基金support from the National Natural Science Foundation of China(Nos.52173298 and 52192611)the National Key R&D Project from Minister of Science and Technology(No.2021YFA1201603)+1 种基金Beijing Natural Science Foundation(No.Z230024)the Fundamental Research Funds for the Central Universities.
文摘Water wave energy exhibits great potential toalleviate the global energy crisis. However, harvesting andutilizing wave energy are challenging due to its irregularity,randomness, and low frequency. Triboelectric nanogenerators(TENGs) have gained significant attention for harvesting waveenergy with high efficiency. This study presents a novelellipsoidal, pendulum-like TENG integrating both liquid-liquid(L-L) and solid-solid (S-S) triboelectricity (LS-TENG). Thisinnovative design enables continuous wave energy harvestingand self-powered marine environment monitoring under variousconditions, including temperature, humidity, and light intensity. The binary immiscible liquids within the LS-TENG’s innersoft balloon create dynamic, and self-adjustable L-L contact interfaces, significantly increasing the L-L contact area andenhancing L-L contact electrification (CE). The unique self-adaptive, soft S-S contact increases the S-S contact areacompared to traditional hard point contact, better adapting to the irregular movements of waves and promoting efficient S-SCE. The LS-TENG achieves highly efficient wave energy harvesting by coupling L-L and S-S CE. Furthermore, the uniquesoft contact design protects the S-S interfaces from mechanical wear and damage during long-term work. The LS-TENG’snovel structure provides an innovative and effective way for water wave energy harvesting.
基金XF and YM acknowledge the support from the National Basic Research Program of China(Grant No.2015CB351900)the National Natural Science Foundation of China(Grant Nos.11402135 and 11320101001).
文摘Epidermal electronic systems feature physical properties that approximate those of the skin,to enable intimate,long-lived skin interfaces for physiological measurements,human–machine interfaces and other applications that cannot be addressed by wearable hardware that is commercially available today.A primary challenge is power supply;the physical bulk,large mass and high mechanical modulus associated with conventional battery technologies can hinder efforts to achieve epidermal characteristics,and near-field power transfer schemes offer only a limited operating distance.Here we introduce an epidermal,farfield radio frequency(RF)power harvester built using a modularized collection of ultrathin antennas,rectifiers and voltage doublers.These components,separately fabricated and tested,can be integrated together via methods involving soft contact lamination.Systematic studies of the individual components and the overall performance in various dielectric environments highlight the key operational features of these systems and strategies for their optimization.The results suggest robust capabilities for battery-free RF power,with relevance to many emerging epidermal technologies.