Autonomous,adaptable,and multimodal locomotion capabilities,which are crucial for the advanced intelligence of biological systems.A prominent focus of investigations in the domain of bionic soft robotics pertains to t...Autonomous,adaptable,and multimodal locomotion capabilities,which are crucial for the advanced intelligence of biological systems.A prominent focus of investigations in the domain of bionic soft robotics pertains to the emulation of autonomous motion,as observed in natural organisms.This research endeavor faces the challenge of enabling spontaneous and sustained motion in soft robots without relying on external stimuli.Considerable progress has been made in the development of autonomous bionic soft robots that utilize smart polymer materials,particularly in the realms of material design,microfabrication technology,and operational mechanisms.Nonetheless,there remains a conspicuous deficiency in the literature concerning a thorough review of this subject matter.This study aims to provide a comprehensive review of autonomous soft robots that have been developed based on self-regulation strategies that encompass self-propulsion,self-oscillation,multistimulus response,and topological constraint structures.Furthermore,this review engages in an in-depth discussion regarding their tunable selfsustaining motion and recovery capabilities,while also contemplating the future development of autonomous soft robotic systems and their potential applications in fields such as biomechanics.展开更多
This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterp...This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.展开更多
Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,w...Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.展开更多
The soft robotics field is on the rise. The highly adaptive robots provide the opportunity to bridge the gap between machines and people. However, their elastomeric nature poses significant challenges to the perceptio...The soft robotics field is on the rise. The highly adaptive robots provide the opportunity to bridge the gap between machines and people. However, their elastomeric nature poses significant challenges to the perception, control, and signal processing. Hydrogels and machine learning provide promising solutions to the problems above. This review aims to summarize this recent trend by first assessing the current hydrogel-based sensing and actuation methods applied to soft robots. We outlined the mechanisms of perception in response to various external stimuli. Next, recent achievements of machine learning for soft robots’ sensing data processing and optimization are evaluated. Here we list the strategies for implementing machine learning models from the perspective of applications. Last, we discuss the challenges and future opportunities in perception data processing and soft robots’ high level tasks.展开更多
Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers...Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.展开更多
Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are i...Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment.展开更多
This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and in...This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef...Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.展开更多
General,high-precision theoretical modeling method is not well developed in the field of soft robotics,which holds back motion control and practical application of soft robots.The concept of modularization brings nove...General,high-precision theoretical modeling method is not well developed in the field of soft robotics,which holds back motion control and practical application of soft robots.The concept of modularization brings novel structure,novel locomotion patterns as well as novel control method for soft robots.This paper presents the concept of hierarchical control method for modular soft robot system and a H-configuration pneumatic modular soft robot is designed as the control object.The H-configuration modular soft robot is composed of two basic motion units that take worm-like locomotion principle.The locomotion principle of the basic motion unit is analyzed and the actuation sequence is optimized by evolution strategy in VOXCAD simulation software.The differential drive method is applied to the H-configuration modular soft robot with multi motion modes and vision sensor is used to control the motion mode of the robot.The H-configuration modular soft robot and the basic motion unit are assembled by a cubic soft module made of silicone rubber.Also,connection mechanism is designed to ensure that the soft modules can be assembled in any direction and posture.Experiments are conducted to verify the effect of the hierarchical control method of the modular soft robots.展开更多
Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal co...Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages.Here,the preparation process of CNT/PDMS composites was designed and optimized,and electrothermal actuators(ETAs)were fabricated by cutting the CNT/PDMS composite films into a“U”shape and coating conductive adhesive.The deformation performance of the ETAs with different thicknesses at different voltages was studied.At a low voltage of about 7 V,the ETA has a deformation rate of up to 93%.Finally,two kinds of electrothermal soft robots(ETSRs)with four-legged and three-legged structures were fabricated,and their inchworm-like motion characteristics were studied.The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure.展开更多
Cable-driven soft robots exhibit complex deformations,making state estimation challenging.Hence,this paper develops a multi-sensor fusion approach using a gradient descent strategy to estimate the weighting coefficien...Cable-driven soft robots exhibit complex deformations,making state estimation challenging.Hence,this paper develops a multi-sensor fusion approach using a gradient descent strategy to estimate the weighting coefficients.These coefficients combine measurements from proprioceptive sensors,such as resistive flex sensors,to determine the bending angle.Additionally,the fusion strategy adopted provides robust state estimates,overcoming mismatches between the flex sensors and soft robot dimensions.Furthermore,a nonlinear differentiator is introduced to filter the differentiated sensor signals to address noise and irrational values generated by the Analog-to-Digital Converter.A rational polynomial equation is also introduced to compensate for temperature drift exhibited by the resistive flex sensors,which affect the accuracy of state estimation and control.The processed multi-sensor data is then utilized in an improved PD controller for closed-loop control of the soft robot.The controller incorporates the nonlinear differentiator and drift compensation,enhancing tracking performance.Experimental results validate the effectiveness of the integrated approach,demonstrating improved tracking accuracy and robustness compared to traditional PD controllers.展开更多
Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptabilit...Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.展开更多
Precise droplet manipulation is critical in material synthesis,biochemical detection,and tissue engineering.However,the droplet velocity and volume manipulated by magnetic techniques are restricted owing to the low ma...Precise droplet manipulation is critical in material synthesis,biochemical detection,and tissue engineering.However,the droplet velocity and volume manipulated by magnetic techniques are restricted owing to the low magnetic force exerted on magnetic particles and beads.Furthermore,magnetic particles are prone to contaminate droplets owing to residues and corrosion.To address these issues,this paper proposes a hydrophilic hard-magnetic soft robot(HMSR)with strong magnetic controllability and chemical stability for precise droplet manipulation.A porous HMSR was synthesized by incorporating NdFeB particles and sacrificial sugar particles into an Ecoflex elastomer.Oxygen plasma treatment was applied to make the HMSR become hydrophilic and thus enhance the driving force exerted on droplets.Three forms of droplet manipulation were demonstrated:droplet transport,droplet splitting,and robot–magnet detachment.Theoretical analysis and experimental results revealed that the critical HMSR speed requisite for droplet transport and splitting was inversely proportional to the droplet volume.Notably,a 50μl droplet was transported in a 20 mT magnetic field at a maximum velocity of 200 mm/s.The maximum droplet volume that the HMSR could transport reached 900μl.Benefiting from its chemical stability,HMSR successfully manipulated chemical reactions of acidic and alkaline droplets.Additionally,the HMSR achieved targeted removal of microparticles through droplet adhesion to them.This HMSR with precise droplet manipulation capability holds broad prospects for applications in biochemical detection,material synthesis,and surgical robotics.展开更多
Soft robotic systems leverage their inherent flexibility and environmental adaptability,demonstrating significant potential across diverse fields.Fluid‐driven actuation has emerged as a mainstream approach because of...Soft robotic systems leverage their inherent flexibility and environmental adaptability,demonstrating significant potential across diverse fields.Fluid‐driven actuation has emerged as a mainstream approach because of its capacity to enable large deformations and high output forces.However,the reliance on conventional rigid pumping components limits application scopes.Soft electrohydrodynamic(EHD)pumps,including soft fiber pumps(SFPs),address these challenges by offering intelligent controllability,silent operation,and a compact structure.This study tackles critical limitations of existing SFPs,such as electrode‐channel detachment,complex fabrication processes,insufficient theoretical frameworks,and dependence on external power sources.Inspired by the multi‐stage drainage structure of biological lymphatic systems,we propose a novel spatially parallel electrode fiber pump configuration,enhancing stability during dynamic deformations.To simplify manufacturing,we develop a low‐cost 3D‐printed lost‐wax strategy,streamlining the fabrication of soft fiber pumps.We propose the concept of customizable profiled fiber pumps,which are well‐suited for 3D‐printed lost‐wax manufacturing methods and broaden the application scope of fiber pumps.By integrating fluid dynamics and electric field coupling analysis,we establish a two‐dimensional simplified model for wire‐electrode‐based pumping mechanisms,experimentally validating its rationality.Furthermore,we integrate a triboelectric nanogenerator(TENG)system to achieve TENG‐powered operation of the fiber pump.Verification in scenarios such as microfluidics,artificial muscles,and wearable temperature‐controlled gloves demonstrates the significant potential of the proposed fiber pump in constructing a new generation of pump sources for fluid‐driven soft robotic applications.展开更多
Twisted nylon actuators(TNAs)are widely recognized in soft robotics for their excellent load-to-weight ratio and cost-effectiveness.However,their limitations in deformation and output force restrict their ability to s...Twisted nylon actuators(TNAs)are widely recognized in soft robotics for their excellent load-to-weight ratio and cost-effectiveness.However,their limitations in deformation and output force restrict their ability to support more advanced applications.Here,we report 3 performance-enhancing strategies inspired by the construction process of chromosome,which are validated through 3 novel types of TNAs.First,we design a dual-level helical structure,demonstrating remarkable improvements in the deformation(60.2% vertically and approximately 100% horizontally)and energy storage capability(launching a miniature basketball to 131 cm in height).Second,we present a parallel-twisted method,where the output force of TNAs reaches 11.0 N,achieving 12.1% contraction under a load of 15 N(10,000 times its weight).Additionally,we construct the dual-level helical structure based on parallel-twisted TNAs,resulting in a 439.7% improvement in load capability.We have adopted TNAs for several applications:(a)two bionic elbows capable of rotating and shooting a miniature basketball over 130 cm;(b)a robot that can rapidly jump over 30 cm;and(c)a soft finger that achieves contracting(15.3% contraction under 2 kg load),precise bending(tracking errors less than 2.0%),and twisting motions.This work presents approaches for fabricating high-performance soft actuators and explores the potential applications of these actuators for driving soft robots with multifunctional capabilities.展开更多
Soft robots demonstrate remarkable potential in diverse environments because of their flexibility and compliance. Althoughvarious soft robots capable of independently responding to multiple external stimuli have been ...Soft robots demonstrate remarkable potential in diverse environments because of their flexibility and compliance. Althoughvarious soft robots capable of independently responding to multiple external stimuli have been developed, challenges persist inthe integration of multiple responses and the avoidance of interference among them. This study develops an amphibious softrobot with triple-response capabilities to temperature, humidity, and magnetic fields. Through the implementation of a strongalkali modification strategy on polyimide films, polyimide acid was successfully formed on the surface, enabling the processingof composite films. This composite film was endowed with dual-responsive characteristics to temperature and humidity.Additionally, by integrating magnetic particles, the composite film constructs a triple-response feature in conjunction withmagnetic driving modules. The soft robot developed from the triple-responsive composite film can rapidly transition capabilitiesbetween submerged/terrestrial and submerged/surface environments, demonstrating exceptional environmental adaptability.This amphibious soft robot can achieve speeds exceeding 4 cm/s (~12 body lengths/s) in various environments. The maximumspeed attainable on the water surface is 9.6 cm/s (~32 body lengths/s). This performance reached the normal moving speed ofinsects such as ants and whirligig beetles. Furthermore, by utilizing the cooperative interplay of multiple stimuli-responsivemechanisms, the soft robot achieves selective swarm manipulation, controllable cargo transportation, and targeted release incomplex terrains. It can carry objects weighing up to 2.5 times its own weight. This multimodal actuation strategy revealssignificant potential for smart robots' development.展开更多
Bioinspired soft robots hold great potential to perform tasks in unstructured terrains.Ferroelectric polymers are highly valued in soft robots for their flexibility,lightweight,and electrically controllable deformatio...Bioinspired soft robots hold great potential to perform tasks in unstructured terrains.Ferroelectric polymers are highly valued in soft robots for their flexibility,lightweight,and electrically controllable deformation.However,achieving large strains in ferroelectric polymers typically requires high driving voltages,posing a significant challenge for practical applications.In this study,we investigate the role of crystalline domain size in enhancing the electrostrain performance of the relaxor ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene-fluorinated alkynes)(P(VDFTrFE-CFE-FA)).Leveraging its remarkable inverse piezoelectric coefficient(|d33^(*)|=701 pm V^(-1)),we demonstrate that the planar films exhibit a five times larger bending angle than that of commercial PVDF films at low electric fields.Based on this material,we design a petal-structured soft robot that achieves a curvature of up to 4.5 cm^(-1) at a DC electric field of 30 Vμm^(-1).When integrated into a bipedal soft robot,it manifests outstanding electrostrain performance,achieving rapid locomotion of~19 body lengths per second(BL s^(-1))at 10 Vμm^(-1)(560 Hz).Moreover,the developed robot demonstrates remarkable abilities in climbing slopes and carrying heavy loads.These findings open new avenues for developing low-voltage-driven soft robots with significant promise for practical applications.展开更多
Soft robotics has received substantial attention due to its remarkable deformability,making it well-suited for a wide range of applications in complex environments,such as medicine,rescue operations,and exploration.Wi...Soft robotics has received substantial attention due to its remarkable deformability,making it well-suited for a wide range of applications in complex environments,such as medicine,rescue operations,and exploration.Within this domain,the interaction of actuation and sensing is of utmost importance for controlling the movements and functions of soft robots.Nonetheless,current research predominantly focuses on isolated actuation and sensing capabilities,often neglecting the critical integration of these 2 domains to achieve intelligent functionality.In this review,we present a comprehensive survey of fundamental actuation strategies and multimodal actuation while also delving into advancements in proprioceptive and haptic sensing and their fusion.We emphasize the importance of integrating actuation and sensing in soft robotics,presenting 3 integration methodologies,namely,sensor surface integration,sensor internal integration,and closed-loop system integration based on sensor feedback.Furthermore,we highlight the challenges in the field and suggest compelling directions for future research.Through this comprehensive synthesis,we aim to stimulate further curiosity among researchers and contribute to the development of genuinely intelligent soft robots.展开更多
Untethered and self-transformable miniature robots are capable of performing reconfigurable deformation and on-demand locomotion,which aid the traversal toward various lumens,and bring revolutionary changes for target...Untethered and self-transformable miniature robots are capable of performing reconfigurable deformation and on-demand locomotion,which aid the traversal toward various lumens,and bring revolutionary changes for targeted delivery in gastrointestinal(GI)tract.However,the viscous non-Newtonian liquid environment and plicae gastricae obstacles severely hamper high-precision actuation and payload delivery.Here,we developed a low-friction soft robot by assembly of densely arranged cone structures and grafting of hydrophobic monolayers.The magnetic orientation encoded robot can move in multiple modes,with a substantially reduced drag,terrain adaptability,and improved motion velocity across the non-Newtonian liquids.Notably,the robot stiffness can be reversibly controlled with magnetically induced hardening,enabling on-site scratching and destruction of antibiotic-ineradicable polymeric matrix in biofilms with a low-frequency magnetic field.Furthermore,the magnetocaloric effect can be utilized to eradicate the bacteria by magnetocaloric effect under high-frequency alternating field.To verify the potential applications inside the body,the clinical imaging-guided actuation platforms were developed for vision-based control and delivery of the robots.The developed low-friction robots and clinical imaging-guided actuation platforms show their high potential to perform bacterial infection therapy in various lumens inside the body.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52275290 and 51905222)the Research Project of State Key Laboratory of Mechanical System and Oscillation(No.MSV202419)+2 种基金Major Program of the National Natural Science Foundation of China(NSFC)for Basic Theory and Key Technology of Tri-Co Robots(No.92248301)Opening Project of the Key Laboratory of Bionic Engineering(Ministry of Education),Jilin University(No.KF2023006)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_2091)。
文摘Autonomous,adaptable,and multimodal locomotion capabilities,which are crucial for the advanced intelligence of biological systems.A prominent focus of investigations in the domain of bionic soft robotics pertains to the emulation of autonomous motion,as observed in natural organisms.This research endeavor faces the challenge of enabling spontaneous and sustained motion in soft robots without relying on external stimuli.Considerable progress has been made in the development of autonomous bionic soft robots that utilize smart polymer materials,particularly in the realms of material design,microfabrication technology,and operational mechanisms.Nonetheless,there remains a conspicuous deficiency in the literature concerning a thorough review of this subject matter.This study aims to provide a comprehensive review of autonomous soft robots that have been developed based on self-regulation strategies that encompass self-propulsion,self-oscillation,multistimulus response,and topological constraint structures.Furthermore,this review engages in an in-depth discussion regarding their tunable selfsustaining motion and recovery capabilities,while also contemplating the future development of autonomous soft robotic systems and their potential applications in fields such as biomechanics.
基金Fundamental Research Funds for the Central Universities(No.2024JBMC011)Aeronautical Science Foundation of China(No.2024Z0560M5001).
文摘This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.
基金the National Natural Science Foundation of China(Nos.52105421 and 52373050)the Guangdong Provincial Natural Science Foundation,China(No.2022A1515011621)+1 种基金the Science and Technology Projects in Guangzhou,China(Nos.202102080330 and 2024A04J6446)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.22qntd0101).
文摘Wireless millirobots engineered to infiltrate intricate vascular networks within living organisms,particularly within constricted and confined spaces,hold immense promise for the future of medical treatments.However,with their multifaceted and intricate designs,some robots often grapple with motion and functionality issues when confronted with tight spaces characterized by small cross-sectional dimensions.In this study,drawing inspiration from the high aspect ratio and undulating swimming patterns of snakes,a millimeter-scale,snake-like robot was designed and fabricated via a combination of extrusion-based four-dimensional(4D)printing and magnetic-responsive intelligent functional inks.A sophisticated motion control strategy was also developed,which enables the robots to perform various dynamic movements,such as undulating swimming,precise turns,graceful circular motions,and coordinated cluster movements,under diverse magnetic field variations.As a potential application,the snake robot can navigate and release drugs in a model coronary intervention vessel with tortuous channels and fluid filling.The novel design and promising applications of this snake robot are invaluable tools in future medical surgeries and interventions.
基金supported in part by the National Natural Science Foundation of China under Grant 62104034the Natural Science Foundation of Hebei Province under Grant F2020501033Fundamental Research Fund for Central University under grant N2223032.
文摘The soft robotics field is on the rise. The highly adaptive robots provide the opportunity to bridge the gap between machines and people. However, their elastomeric nature poses significant challenges to the perception, control, and signal processing. Hydrogels and machine learning provide promising solutions to the problems above. This review aims to summarize this recent trend by first assessing the current hydrogel-based sensing and actuation methods applied to soft robots. We outlined the mechanisms of perception in response to various external stimuli. Next, recent achievements of machine learning for soft robots’ sensing data processing and optimization are evaluated. Here we list the strategies for implementing machine learning models from the perspective of applications. Last, we discuss the challenges and future opportunities in perception data processing and soft robots’ high level tasks.
基金funded by the International Cooperation Program of the Natural Science Foundation of China(No.52261135542)Zhejiang Provincial Natural Science Foundation of China(No.LD22E050002)the Russian Science Foundation(No.23-43-00057)for financial support。
文摘Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51822502 and 91948202)the National Key Research and Development Program of China(No.2019YFB1309500)the“111 Project”(Grant No.B07018).
文摘Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment.
文摘This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
基金supported by National R&D Program through the NRF funded by Ministry of Science and ICT(2021M3D1A2049315)and the Technology Innovation Program(20021909,Development of H2 gas detection films(?0.1%)and process technologies)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Basic Science Program through the NRF of Korea,funded by the Ministry of Science and ICT,Korea.(Project Number:NRF-2022R1C1C1008845)supported by Basic Science Research Program through the NRF funded by the Ministry of Education(Project Number:NRF-2022R1A6A3A13073158)。
文摘Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.
基金This work is supported by National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant no.52025054)National Natural Science Foundation of China(Grant no.U1713201).
文摘General,high-precision theoretical modeling method is not well developed in the field of soft robotics,which holds back motion control and practical application of soft robots.The concept of modularization brings novel structure,novel locomotion patterns as well as novel control method for soft robots.This paper presents the concept of hierarchical control method for modular soft robot system and a H-configuration pneumatic modular soft robot is designed as the control object.The H-configuration modular soft robot is composed of two basic motion units that take worm-like locomotion principle.The locomotion principle of the basic motion unit is analyzed and the actuation sequence is optimized by evolution strategy in VOXCAD simulation software.The differential drive method is applied to the H-configuration modular soft robot with multi motion modes and vision sensor is used to control the motion mode of the robot.The H-configuration modular soft robot and the basic motion unit are assembled by a cubic soft module made of silicone rubber.Also,connection mechanism is designed to ensure that the soft modules can be assembled in any direction and posture.Experiments are conducted to verify the effect of the hierarchical control method of the modular soft robots.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602021)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-18-023A2)
文摘Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages.Here,the preparation process of CNT/PDMS composites was designed and optimized,and electrothermal actuators(ETAs)were fabricated by cutting the CNT/PDMS composite films into a“U”shape and coating conductive adhesive.The deformation performance of the ETAs with different thicknesses at different voltages was studied.At a low voltage of about 7 V,the ETA has a deformation rate of up to 93%.Finally,two kinds of electrothermal soft robots(ETSRs)with four-legged and three-legged structures were fabricated,and their inchworm-like motion characteristics were studied.The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure.
基金financial support from the National Natural Science Foundation of China(62103039,62073030)the Joint Fund of Ministry of Education for Equipment Pre-Research(8091B03032303).
文摘Cable-driven soft robots exhibit complex deformations,making state estimation challenging.Hence,this paper develops a multi-sensor fusion approach using a gradient descent strategy to estimate the weighting coefficients.These coefficients combine measurements from proprioceptive sensors,such as resistive flex sensors,to determine the bending angle.Additionally,the fusion strategy adopted provides robust state estimates,overcoming mismatches between the flex sensors and soft robot dimensions.Furthermore,a nonlinear differentiator is introduced to filter the differentiated sensor signals to address noise and irrational values generated by the Analog-to-Digital Converter.A rational polynomial equation is also introduced to compensate for temperature drift exhibited by the resistive flex sensors,which affect the accuracy of state estimation and control.The processed multi-sensor data is then utilized in an improved PD controller for closed-loop control of the soft robot.The controller incorporates the nonlinear differentiator and drift compensation,enhancing tracking performance.Experimental results validate the effectiveness of the integrated approach,demonstrating improved tracking accuracy and robustness compared to traditional PD controllers.
基金the National Key R&D Program of China(No.2023YFE0208700)National Natural Sci-ence Foundation of China(No.92163109 and 52072095)+7 种基金Shenzhen Science and Technology Program(No.RCJC20231211090000001,GXWD20231129101105001)the National Natural Science Foundation of China(No.52205590)the Natural Science Foundation of Jiangsu Province(No.BK20220834)the Start-up Research Fund of Southeast University(No.RF1028623098)the State Key Laboratory of Robotics and Systems(HIT)(No.SKLRS-2024-KF-11)National Natural Science Foundation of China(No.52202348)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011491)Shenzhen Science and Technology Program(Nos.GXWD20220818224716001,KJZD20231023100302006).
文摘Due to the small size,active mobility,and intrinsic softness,miniature soft robots hold promising po-tentials in reaching the deep region inside living bodies otherwise inaccessible with compelling agility,adaptability and safety.Various materials and actuation strategies have been developed for creating soft robots,among which,ferromagnetic soft materials that self-actuate in response to external magnetic fields have attracted worldwide attention due to their remote controllability and excellent compatibil-ity with biological tissues.This review presents comprehensive and systematic research advancements in the design,fabrication,and applications of ferromagnetic soft materials for miniature robots,providing in-sights into their potential use in biomedical fields and beyond.The programming strategies of ferromag-netic soft materials are summarized and classified,including mold-assisted programming,3D printing-assisted programming,microassembly-assisted programming,and magnetization reprogramming.Each approach possesses unique advantages in manipulating the magnetic responsiveness of ferromagnetic soft materials to achieve outstanding actuation and deformation performances.We then discuss the biomedi-cal applications of ferromagnetic soft material-based soft robots(e.g.,minimally invasive surgery,targeted delivery,and tissue engineering),highlighting their potentials in revolutionizing biomedical technologies.This review also points out the current challenges and provides insights into future research directions,which we hope can serve as a useful reference for the development of next-generation adaptive miniature robots.
基金supported by the Science and Technology Program from the State Grid Corporation of China(Grant No.5700-202155453A-0-0-00):“Development of flexible liquid metal based micro-sensor with anti-electromagnetic interference ability for power engineering applications.”。
文摘Precise droplet manipulation is critical in material synthesis,biochemical detection,and tissue engineering.However,the droplet velocity and volume manipulated by magnetic techniques are restricted owing to the low magnetic force exerted on magnetic particles and beads.Furthermore,magnetic particles are prone to contaminate droplets owing to residues and corrosion.To address these issues,this paper proposes a hydrophilic hard-magnetic soft robot(HMSR)with strong magnetic controllability and chemical stability for precise droplet manipulation.A porous HMSR was synthesized by incorporating NdFeB particles and sacrificial sugar particles into an Ecoflex elastomer.Oxygen plasma treatment was applied to make the HMSR become hydrophilic and thus enhance the driving force exerted on droplets.Three forms of droplet manipulation were demonstrated:droplet transport,droplet splitting,and robot–magnet detachment.Theoretical analysis and experimental results revealed that the critical HMSR speed requisite for droplet transport and splitting was inversely proportional to the droplet volume.Notably,a 50μl droplet was transported in a 20 mT magnetic field at a maximum velocity of 200 mm/s.The maximum droplet volume that the HMSR could transport reached 900μl.Benefiting from its chemical stability,HMSR successfully manipulated chemical reactions of acidic and alkaline droplets.Additionally,the HMSR achieved targeted removal of microparticles through droplet adhesion to them.This HMSR with precise droplet manipulation capability holds broad prospects for applications in biochemical detection,material synthesis,and surgical robotics.
基金funded by the Zhejiang Provincial Natural Science Foundation of China(LZYQ25E050001,W.T.)the National Natural Science Foundation of China(52305074,W.T.)+2 种基金the National Natural Science Foundation of China(524B2051,X.G.)the National Natural Science Foundation of China(52205073,Z.J.)International Cooperation Program of the Natural Science Foundation of China(52261135542,J.Z.).
文摘Soft robotic systems leverage their inherent flexibility and environmental adaptability,demonstrating significant potential across diverse fields.Fluid‐driven actuation has emerged as a mainstream approach because of its capacity to enable large deformations and high output forces.However,the reliance on conventional rigid pumping components limits application scopes.Soft electrohydrodynamic(EHD)pumps,including soft fiber pumps(SFPs),address these challenges by offering intelligent controllability,silent operation,and a compact structure.This study tackles critical limitations of existing SFPs,such as electrode‐channel detachment,complex fabrication processes,insufficient theoretical frameworks,and dependence on external power sources.Inspired by the multi‐stage drainage structure of biological lymphatic systems,we propose a novel spatially parallel electrode fiber pump configuration,enhancing stability during dynamic deformations.To simplify manufacturing,we develop a low‐cost 3D‐printed lost‐wax strategy,streamlining the fabrication of soft fiber pumps.We propose the concept of customizable profiled fiber pumps,which are well‐suited for 3D‐printed lost‐wax manufacturing methods and broaden the application scope of fiber pumps.By integrating fluid dynamics and electric field coupling analysis,we establish a two‐dimensional simplified model for wire‐electrode‐based pumping mechanisms,experimentally validating its rationality.Furthermore,we integrate a triboelectric nanogenerator(TENG)system to achieve TENG‐powered operation of the fiber pump.Verification in scenarios such as microfluidics,artificial muscles,and wearable temperature‐controlled gloves demonstrates the significant potential of the proposed fiber pump in constructing a new generation of pump sources for fluid‐driven soft robotic applications.
基金supported by the National Natural Science Foundation of China(no.52225501 and no.523B2040).
文摘Twisted nylon actuators(TNAs)are widely recognized in soft robotics for their excellent load-to-weight ratio and cost-effectiveness.However,their limitations in deformation and output force restrict their ability to support more advanced applications.Here,we report 3 performance-enhancing strategies inspired by the construction process of chromosome,which are validated through 3 novel types of TNAs.First,we design a dual-level helical structure,demonstrating remarkable improvements in the deformation(60.2% vertically and approximately 100% horizontally)and energy storage capability(launching a miniature basketball to 131 cm in height).Second,we present a parallel-twisted method,where the output force of TNAs reaches 11.0 N,achieving 12.1% contraction under a load of 15 N(10,000 times its weight).Additionally,we construct the dual-level helical structure based on parallel-twisted TNAs,resulting in a 439.7% improvement in load capability.We have adopted TNAs for several applications:(a)two bionic elbows capable of rotating and shooting a miniature basketball over 130 cm;(b)a robot that can rapidly jump over 30 cm;and(c)a soft finger that achieves contracting(15.3% contraction under 2 kg load),precise bending(tracking errors less than 2.0%),and twisting motions.This work presents approaches for fabricating high-performance soft actuators and explores the potential applications of these actuators for driving soft robots with multifunctional capabilities.
基金supported by the National Natural Science Foundation of China[Grant No.52422511,Y.C.]the Guangdong Basic and Applied Basic Research Foundation[Grant No.2022B1515120011,Y.C.]+1 种基金the Guangzhou Basic and Applied Basic Research Foundation[Grant No.2024A04J6362,Y.C.and Grant No.GZGX-24-01,Y.C.]the Zhuhai Industry-University-Research Cooperation Project[Grant No.2320004002350,Y.C.].
文摘Soft robots demonstrate remarkable potential in diverse environments because of their flexibility and compliance. Althoughvarious soft robots capable of independently responding to multiple external stimuli have been developed, challenges persist inthe integration of multiple responses and the avoidance of interference among them. This study develops an amphibious softrobot with triple-response capabilities to temperature, humidity, and magnetic fields. Through the implementation of a strongalkali modification strategy on polyimide films, polyimide acid was successfully formed on the surface, enabling the processingof composite films. This composite film was endowed with dual-responsive characteristics to temperature and humidity.Additionally, by integrating magnetic particles, the composite film constructs a triple-response feature in conjunction withmagnetic driving modules. The soft robot developed from the triple-responsive composite film can rapidly transition capabilitiesbetween submerged/terrestrial and submerged/surface environments, demonstrating exceptional environmental adaptability.This amphibious soft robot can achieve speeds exceeding 4 cm/s (~12 body lengths/s) in various environments. The maximumspeed attainable on the water surface is 9.6 cm/s (~32 body lengths/s). This performance reached the normal moving speed ofinsects such as ants and whirligig beetles. Furthermore, by utilizing the cooperative interplay of multiple stimuli-responsivemechanisms, the soft robot achieves selective swarm manipulation, controllable cargo transportation, and targeted release incomplex terrains. It can carry objects weighing up to 2.5 times its own weight. This multimodal actuation strategy revealssignificant potential for smart robots' development.
基金National Natural Science Foundation of China,Grant/Award Number:U2330120Natural Science Foundation of Sichuan Province of China,Grant/Award Number:2023NSFSC0313Basic Research Cultivation Project of Southwest Jiaotong University,Grant/Award Number:2682023KJ024。
文摘Bioinspired soft robots hold great potential to perform tasks in unstructured terrains.Ferroelectric polymers are highly valued in soft robots for their flexibility,lightweight,and electrically controllable deformation.However,achieving large strains in ferroelectric polymers typically requires high driving voltages,posing a significant challenge for practical applications.In this study,we investigate the role of crystalline domain size in enhancing the electrostrain performance of the relaxor ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene-fluorinated alkynes)(P(VDFTrFE-CFE-FA)).Leveraging its remarkable inverse piezoelectric coefficient(|d33^(*)|=701 pm V^(-1)),we demonstrate that the planar films exhibit a five times larger bending angle than that of commercial PVDF films at low electric fields.Based on this material,we design a petal-structured soft robot that achieves a curvature of up to 4.5 cm^(-1) at a DC electric field of 30 Vμm^(-1).When integrated into a bipedal soft robot,it manifests outstanding electrostrain performance,achieving rapid locomotion of~19 body lengths per second(BL s^(-1))at 10 Vμm^(-1)(560 Hz).Moreover,the developed robot demonstrates remarkable abilities in climbing slopes and carrying heavy loads.These findings open new avenues for developing low-voltage-driven soft robots with significant promise for practical applications.
基金the financial support from the Start-up Research Fund of Southeast University(RF1028623150 and RF1028623098)the National Natural Science Foundation of China(22109021 and 52205590)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20200375 and BK20220834)the Jiangsu Shuangchuang Talent Program(JSSCBS20210100).
文摘Soft robotics has received substantial attention due to its remarkable deformability,making it well-suited for a wide range of applications in complex environments,such as medicine,rescue operations,and exploration.Within this domain,the interaction of actuation and sensing is of utmost importance for controlling the movements and functions of soft robots.Nonetheless,current research predominantly focuses on isolated actuation and sensing capabilities,often neglecting the critical integration of these 2 domains to achieve intelligent functionality.In this review,we present a comprehensive survey of fundamental actuation strategies and multimodal actuation while also delving into advancements in proprioceptive and haptic sensing and their fusion.We emphasize the importance of integrating actuation and sensing in soft robotics,presenting 3 integration methodologies,namely,sensor surface integration,sensor internal integration,and closed-loop system integration based on sensor feedback.Furthermore,we highlight the challenges in the field and suggest compelling directions for future research.Through this comprehensive synthesis,we aim to stimulate further curiosity among researchers and contribute to the development of genuinely intelligent soft robots.
基金supported by the National Natural Science Foundation of China(22102104 and U22A2064)the General Research Fund(project no.14203123)+7 种基金National Key Research and Development Project(grant no.2023YFB4705300)the Shenzhen Science and Technology Program(JCYJ20220531103409021 and JCYJ20220818101611025)the Guangdong Basic and Applied Basic Research Foundation(2021A1515010672 and 2022B1515120010)the Research Impact Fund(project no.R4015-21)Research Fellow Scheme(project no.RFS2122-4S03)the EU-Hong Kong Research and Innovation Cooperation Co-funding Mechanism(project no.E-CUHK401/20)from the Research Grants Council(RGC)of Hong Kongthe support from the SIATCUHK Joint Laboratory of Robotics and Intelligent Systems and the Multi-Scale Medical Robotics Center(MRC),InnoHK,at the Hong Kong Science ParkGuangdong University Students Science and Technology Innovation Cultivation Special Fund Project with project no.pdjh2022b0446.
文摘Untethered and self-transformable miniature robots are capable of performing reconfigurable deformation and on-demand locomotion,which aid the traversal toward various lumens,and bring revolutionary changes for targeted delivery in gastrointestinal(GI)tract.However,the viscous non-Newtonian liquid environment and plicae gastricae obstacles severely hamper high-precision actuation and payload delivery.Here,we developed a low-friction soft robot by assembly of densely arranged cone structures and grafting of hydrophobic monolayers.The magnetic orientation encoded robot can move in multiple modes,with a substantially reduced drag,terrain adaptability,and improved motion velocity across the non-Newtonian liquids.Notably,the robot stiffness can be reversibly controlled with magnetically induced hardening,enabling on-site scratching and destruction of antibiotic-ineradicable polymeric matrix in biofilms with a low-frequency magnetic field.Furthermore,the magnetocaloric effect can be utilized to eradicate the bacteria by magnetocaloric effect under high-frequency alternating field.To verify the potential applications inside the body,the clinical imaging-guided actuation platforms were developed for vision-based control and delivery of the robots.The developed low-friction robots and clinical imaging-guided actuation platforms show their high potential to perform bacterial infection therapy in various lumens inside the body.