期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于视觉触觉双重迁移学习的番茄成熟度检测方法 被引量:1
1
作者 张鹏 杜东峰 +2 位作者 李爽 单东日 陈振学 《农业机械学报》 北大核心 2025年第1期74-83,共10页
针对当前自动化采摘过程中仅依赖视觉技术无法准确识别番茄成熟度的问题,提出了一种基于视觉触觉双重迁移学习的番茄成熟度检测方法。该方法首先采用视觉触觉双重迁移学习融合算法作为特征提取融合模块,解决无法有效提取番茄特征信息的... 针对当前自动化采摘过程中仅依赖视觉技术无法准确识别番茄成熟度的问题,提出了一种基于视觉触觉双重迁移学习的番茄成熟度检测方法。该方法首先采用视觉触觉双重迁移学习融合算法作为特征提取融合模块,解决无法有效提取番茄特征信息的问题。其次,将软参数共享-多标签分类方法作为分类模块,通过增加不同分类任务之间的关联性,避免出现过拟合的现象。本文主要针对成熟后为红、黄果等单一颜色的番茄品种,并在新开发的视觉触觉数据集进行实验研究。实验表明,软参数共享-多标签检测模型参数量为1.882×10^(7),成熟度AUC分值达到0.9773,对比不确定性加权损失、自适应硬参数共享、十字绣网络和软参数共享等检测模型,参数量分别下降3.08×10^(6)、6.16×10^(6)、3.08×10^(6)和3.08×10^(6),成熟度AUC分值分别提高0.0175、0.0179、0.0267和0.0089。这表明该方法在一定程度上提高了自动化采摘过程中对番茄成熟度的检测能力,为番茄成熟度检测问题提供了一种有效的解决方法。 展开更多
关键词 番茄成熟度 机器视觉 机器触觉 双重迁移学习 软参数共享-多标签
在线阅读 下载PDF
软多标签和深度特征融合的无监督行人重识别 被引量:7
2
作者 张宝华 朱思雨 +6 位作者 吕晓琪 谷宇 王月明 刘新 任彦 李建军 张明 《光电工程》 CAS CSCD 北大核心 2020年第12期13-22,共10页
跨摄像头场景中依赖面向标签映射关系的学习以提高识别精度,有监督行人重识别模型虽然识别精度较好,但存在可扩展问题,诸如算法识别精度严重依赖有效的监督信息,算法实时性差等;针对上述问题,提出一种基于软多标签的无监督行人重识别算... 跨摄像头场景中依赖面向标签映射关系的学习以提高识别精度,有监督行人重识别模型虽然识别精度较好,但存在可扩展问题,诸如算法识别精度严重依赖有效的监督信息,算法实时性差等;针对上述问题,提出一种基于软多标签的无监督行人重识别算法。为了提高标签匹配精度,首先利用软多标签逼近真实标签,通过计算参考数据集和参考代理在软多标签函数中的损失函数,预训练参考数据集,并构建预训练与训练结果的映射模型。再通过生成数据和真实数据分布的最小距离的期望即简化的2-Wasserstein距离计算相机视图中软多标签均值和标准差得到损失函数,解决跨视域标签一致性问题。为了提高软多标签对未标记目标数据集的有效性,计算联合嵌入损失,挖掘不同类别间的相似对,纠正跨域分布错位。针对残差网络训练时长和无监督学习精度低的问题,通过结合压缩激励网络(SENet)和多层级深度特征融合改进残差网络的结构,提高训练速度和精度。实验结果表明,该方法在标准数据集下的首位命中率和平均精度均值优于先进相关算法。 展开更多
关键词 残差网络 行人重识别 软多标签 无监督 深度特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部