期刊文献+
共找到1,042篇文章
< 1 2 53 >
每页显示 20 50 100
Mixture of Experts Framework Based on Soft Actor-Critic Algorithm for Highway Decision-Making of Connected and Automated Vehicles
1
作者 Fuxing Yao Chao Sun +2 位作者 Bing Lu Bo Wang Haiyang Yu 《Chinese Journal of Mechanical Engineering》 2025年第1期382-395,共14页
Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements... Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability. 展开更多
关键词 DECISION-MAKING soft actor-critic Connected and automated vehicles
在线阅读 下载PDF
Optimal Power Dispatch of Active Distribution Network and P2P Energy Trading Based on Soft Actor-critic Algorithm Incorporating Distributed Trading Control
2
作者 Yongjun Zhang Jun Zhang +3 位作者 Guangbin Wu Jiehui Zheng Dongming Liu Yuzheng An 《Journal of Modern Power Systems and Clean Energy》 2025年第2期540-551,共12页
Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the powe... Peer-to-peer(P2P)energy trading in active distribution networks(ADNs)plays a pivotal role in promoting the efficient consumption of renewable energy sources.However,it is challenging to effectively coordinate the power dispatch of ADNs and P2P energy trading while preserving the privacy of different physical interests.Hence,this paper proposes a soft actor-critic algorithm incorporating distributed trading control(SAC-DTC)to tackle the optimal power dispatch of ADNs and the P2P energy trading considering privacy preservation among prosumers.First,the soft actor-critic(SAC)algorithm is used to optimize the control strategy of device in ADNs to minimize the operation cost,and the primary environmental information of the ADN at this point is published to prosumers.Then,a distributed generalized fast dual ascent method is used to iterate the trading process of prosumers and maximize their revenues.Subsequently,the results of trading are encrypted based on the differential privacy technique and returned to the ADN.Finally,the social welfare value consisting of ADN operation cost and P2P market revenue is utilized as a reward value to update network parameters and control strategies of the deep reinforcement learning.Simulation results show that the proposed SAC-DTC algorithm reduces the ADN operation cost,boosts the P2P market revenue,maximizes the social welfare,and exhibits high computational accuracy,demonstrating its practical application to the operation of power systems and power markets. 展开更多
关键词 Optimal power dispatch peer-to-peer(P2P)energy trading active distribution network(ADN) distributed trading soft actor-critic algorithm privacy preservation
原文传递
A Hybrid Data-driven Approach Integrating Temporal Fusion Transformer and Soft Actor-critic Algorithm for Optimal Scheduling of Building Integrated Energy Systems
3
作者 Ze Hu Peijun Zheng +4 位作者 Ka Wing Chan Siqi Bu Ziqing Zhu Xiang Wei Yosuke Nakanishi 《Journal of Modern Power Systems and Clean Energy》 2025年第3期878-891,共14页
Building integrated energy systems(BIESs)are pivotal for enhancing energy efficiency by accounting for a significant proportion of global energy consumption.Two key barriers that reduce the BIES operational efficiency... Building integrated energy systems(BIESs)are pivotal for enhancing energy efficiency by accounting for a significant proportion of global energy consumption.Two key barriers that reduce the BIES operational efficiency mainly lie in the renewable generation uncertainty and operational non-convexity of combined heat and power(CHP)units.To this end,this paper proposes a soft actor-critic(SAC)algorithm to solve the scheduling problem of BIES,which overcomes the model non-convexity and shows advantages in robustness and generalization.This paper also adopts a temporal fusion transformer(TFT)to enhance the optimal solution for the SAC algorithm by forecasting the renewable generation and energy demand.The TFT can effectively capture the complex temporal patterns and dependencies that span multiple steps.Furthermore,its forecasting results are interpretable due to the employment of a self-attention layer so as to assist in more trustworthy decision-making in the SAC algorithm.The proposed hybrid data-driven approach integrating TFT and SAC algorithm,i.e.,TFT-SAC approach,is trained and tested on a real-world dataset to validate its superior performance in reducing the energy cost and computational time compared with the benchmark approaches.The generalization performance for the scheduling policy,as well as the sensitivity analysis,are examined in the case studies. 展开更多
关键词 Building integrated energy system(BIES) hybrid data-driven approach time-series forecast optimal scheduling soft actor-critic(SAC) temporal fusion transformer(TFT)
原文传递
Path Planning and Tracking Control for Parking via Soft Actor-Critic Under Non-Ideal Scenarios 被引量:3
4
作者 Xiaolin Tang Yuyou Yang +3 位作者 Teng Liu Xianke Lin Kai Yang Shen Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期181-195,共15页
Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja... Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees. 展开更多
关键词 Automatic parking control strategy parking deviation(APS) soft actor-critic(SAC)
在线阅读 下载PDF
GRU-integrated constrained soft actor-critic learning enabled fully distributed scheduling strategy for residential virtual power plant
5
作者 Xiaoyun Deng Yongdong Chen +2 位作者 Dongchuan Fan Youbo Liu Chao Ma 《Global Energy Interconnection》 EI CSCD 2024年第2期117-129,共13页
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in... In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort. 展开更多
关键词 Residential virtual power plant Residential distributed energy resource Constrained soft actor-critic Fully distributed scheduling strategy
在线阅读 下载PDF
An SAC-AMBER Algorithm for Flexible Job Shop Scheduling with Material Kit
6
作者 Bo Li Xiaoying Yang +2 位作者 Zhijie Pei Xin Yang Yaqi Wu 《Computers, Materials & Continua》 2025年第8期3649-3672,共24页
It is well known that the kit completeness of parts processed in the previous stage is crucial for the subsequent manufacturing stage.This paper studies the flexible job shop scheduling problem(FJSP)with the objective... It is well known that the kit completeness of parts processed in the previous stage is crucial for the subsequent manufacturing stage.This paper studies the flexible job shop scheduling problem(FJSP)with the objective of material kitting,where a material kit is a collection of components that ensures that a batch of components can be ready at the same time during the product assembly process.In this study,we consider completion time variance and maximumcompletion time as scheduling objectives,continue the weighted summation process formultiple objectives,and design adaptive weighted summation parameters to optimize productivity and reduce the difference in completion time between components in the same kit.The Soft Actor Critic(SAC)algorithm is designed to be combined with the Adaptive Multi-Buffer Experience Replay(AMBER)mechanism to propose the SAC-AMBER algorithm.The AMBER mechanism optimizes the experience sampling and policy updating process and enhances learning efficiency by categorically storing the experience into the standard buffer,the high equipment utilization buffer,and the high productivity buffer.Experimental results show that the SAC-AMBER algorithm can effectively reduce the maximum completion time on multiple datasets,reduce the difference in component completion time in the same kit,and thus optimize the readiness of the part kits,demonstrating relatively good stability and convergence.Compared with traditional heuristics,meta-heuristics,and other deep reinforcement learning methods,the SAC-AMBER algorithm performs better in terms of solution quality and computational efficiency,and through extensive testing on multiple datasets,the algorithm has been confirmed to have good generalization ability,providing an effective solution to the FJSP problem. 展开更多
关键词 soft actor-critic DRL adaptive multi-buffer experience replay FJSP material kit
在线阅读 下载PDF
Fuzzy N-Bipolar Soft Sets for Multi-Criteria Decision-Making:Theory and Application
7
作者 Sagvan Y.Musa Baravan A.Asaad +2 位作者 Hanan Alohali Zanyar A.Ameen Mesfer H.Alqahtani 《Computer Modeling in Engineering & Sciences》 2025年第4期911-943,共33页
This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in ... This paper introduces fuzzy N-bipolar soft(FN-BS)sets,a novel mathematical framework designed to enhance multi-criteria decision-making(MCDM)processes under uncertainty.The study addresses a significant limitation in existing models by unifying fuzzy logic,the consideration of bipolarity,and the ability to evaluate attributes on a multinary scale.The specific contributions of the FN-BS framework include:(1)a formal definition and settheoretic foundation,(2)the development of two innovative algorithms for solving decision-making(DM)problems,and(3)a comparative analysis demonstrating its superiority over established models.The proposed framework is applied to a real-world case study on selecting vaccination programs across multiple countries,showcasing consistent DM outcomes and exceptional adaptability to complex and uncertain scenarios.These results position FN-BS sets as a versatile and powerful tool for addressing dynamic DM challenges. 展开更多
关键词 Fuzzy N-bipolar soft sets N-bipolar soft sets N-soft sets MCDM algorithmS
在线阅读 下载PDF
A Reduced Search Soft-Output Detection Algorithm and Its Application to Turbo-Equalization
8
作者 樊祥宁 窦怀宇 毕光国 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期8-12,共5页
To decrease the complexity of MAP algorithm, reduced state or reduced search techniques can be applied. In this paper we propose a reduced search soft output detection algorithm fully based on the principle of M a... To decrease the complexity of MAP algorithm, reduced state or reduced search techniques can be applied. In this paper we propose a reduced search soft output detection algorithm fully based on the principle of M algorithm for turbo equalization, which is a suboptimum version of the Lee algorithm. This algorithm is called soft output M algorithm (denoted as SO M algorithm), which applies the M strategy to both the forward recursion and the extended forward recursion of the Lee algorithm. Computer simulation results show that, by properly selecting and adjusting the breadth parameter and depth parameter during the iteration of turbo equalization, this algorithm can obtain good performance and complexity trade off. 展开更多
关键词 MAP algorithm Lee algorithm soft output M algorithm turbo equalization
在线阅读 下载PDF
A Novel Sequential Soft Output Viterbi Algorithm
9
作者 钱学诚 赵春明 程时昕 《Journal of Southeast University(English Edition)》 EI CAS 1999年第2期20-23,共4页
In order to fully utilize the soft decision ability of the outer decoder in a concatenated system, reliability information (called soft output) from the inner decoder or equalizer is required. In this paper, based on... In order to fully utilize the soft decision ability of the outer decoder in a concatenated system, reliability information (called soft output) from the inner decoder or equalizer is required. In this paper, based on the analysis of typical implementations of soft output VA, a novel algorithm is proposed by utilizing the property of Viterbi algorithm. Compared with the typical implementations, less processing expense is required by the new algorithm for weighting the hard decisions of VA. Meanwhile, simulation results show that, deterioration in performance of this algorithm is usually small for decoding of convolutional code and negligible for equalization. 展开更多
关键词 EQUALIZATION DECODING soft output Viterbi algorithm
在线阅读 下载PDF
Soft Tissue Deformation Model Based on Marquardt Algorithm and Enrichment Function 被引量:2
10
作者 Xiaorui Zhang Xuefeng Yu +1 位作者 Wei Sun Aiguo Song 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期1131-1147,共17页
In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marqu... In order to solve the problem of high computing cost and low simulation accuracy caused by discontinuity of incision in traditional meshless model,this paper proposes a soft tissue deformation model based on the Marquardt algorithm and enrichment function.The model is based on the element-free Galerkin method,in which Kelvin viscoelastic model and adjustment function are integrated.Marquardt algorithm is applied to fit the relation between force and displacement caused by surface deformation,and the enrichment function is applied to deal with the discontinuity in the meshless method.To verify the validity of the model,the Sensable Phantom Omni force tactile interactive device is used to simulate the deformations of stomach and heart.Experimental results show that the proposed model improves the real-time performance and accuracy of soft tissue deformation simulation,which provides a new perspective for the application of the meshless method in virtual surgery. 展开更多
关键词 Virtual surgery meshless model Marquardt algorithm enrichment function soft tissue simulation
在线阅读 下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
11
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
A fuzzy immune algorithm and its application in solvent tower soft sensor modeling
12
作者 孟科 董朝阳 +2 位作者 高晓丹 王海明 李晓 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第2期197-204,共8页
An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method i... An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method is presented by using the fuzzy system to realize the adaptive selection of two key parameters (possibility of crossover and mutation). By comparing and analyzing the results of several benchmark functions, the performance of fuzzy immune algorithm (FIA) is approved. Not only the difficulty of parameters selection is relieved, but also the precision and stability are improved. At last, the FIA is ap- plied to optimization of the structure and parameters in radial basis function neural network (RBFNN) based on an orthogonal sequential method. And the availability of algorithm is proved by applying RBFNN in modeling in soft sensor of solvent tower. 展开更多
关键词 immune algorithm fuzzy system radial basis function neural network (RBFNN) soft sensor
在线阅读 下载PDF
An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation
13
作者 Lei Ling Lijun Huang +4 位作者 Jie Wang Li Zhang Yue Wu Yizhang Jiang Kaijian Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2353-2379,共27页
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime... In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine. 展开更多
关键词 soft subspace clustering image segmentation genetic algorithm generalized noise brain MR images
在线阅读 下载PDF
Soft-output stack algorithm with lattice-reduction for MIMO detection
14
作者 Yuan Yang Hailin Zhang Junfeng Hue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期197-203,共7页
A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on t... A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods. 展开更多
关键词 multiple-input multiple-output (MIMO) soft-output de- tection lattice-reduction stack algorithm.
在线阅读 下载PDF
缓存辅助的移动边缘计算任务卸载与资源分配 被引量:1
15
作者 李致远 陈品润 《计算机工程与设计》 北大核心 2025年第5期1248-1255,共8页
针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,... 针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,上层使用软动作评价算法进行计算任务卸载与资源分配决策。仿真实验结果表明,HRLJCORA算法与现有基线算法相比,有效降低了总开销,相较于联合优化计算任务卸载与资源分配(JORA)算法,卸载决策奖励值提高了13.11%,为用户提供了更优质的服务。 展开更多
关键词 移动边缘计算 缓存辅助 卸载决策 资源分配 分层强化学习 深度Q-learning网络算法 软动作评价算法
在线阅读 下载PDF
基于SAC的桥式起重机智能防摇控制
16
作者 唐伟强 王伟 +1 位作者 马瑞 许天鹏 《中国工程机械学报》 北大核心 2025年第3期438-443,共6页
针对桥式起重机载荷摆角抑制问题,提出了一种基于软演员评论家算法的智能防摇控制方法。以减小载荷摆角和尽快到达小车期望位置为目标设计奖励函数,采用1个动作网络,以起重机的小车位移、小车速度、负载角度和负载角速度作为动作网络输... 针对桥式起重机载荷摆角抑制问题,提出了一种基于软演员评论家算法的智能防摇控制方法。以减小载荷摆角和尽快到达小车期望位置为目标设计奖励函数,采用1个动作网络,以起重机的小车位移、小车速度、负载角度和负载角速度作为动作网络输入,驱动力作为动作网络的输出。为了提高训练过程中的稳定性,采用4个价值网络,并在价值网络中引入熵正则项和熵加权系数,用于平衡训练过程中探索和利用之间的关系。价值网络通过软更新的方式得到目标网络,从而减少了训练过程中局部最优和发散的情况。最后通过模型训练,得到用于控制的动作网络。结果表明:所提出的智能防摇控制系统对载荷摆角具有很好的抑制作用,而且对载荷质量变化、绳长参数摄动以及外部干扰具有很好的鲁棒性。与基于末端执行器广义运动方法相比,所提出的方法在起重机系统动态性能和抗干扰方面展现出一定的优势。 展开更多
关键词 桥式起重机 摆角控制 软演员评论家算法 强化学习
在线阅读 下载PDF
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting
17
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
光照不均匀条件下无人机航拍低照度图像增强方法 被引量:1
18
作者 黄静 欧余韬 《现代电子技术》 北大核心 2025年第1期55-59,共5页
增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过... 增强图像时高低频参数未增强,没有更好地保留图像的细节和平衡图像的亮度,因此,提出一种光照不均匀条件下无人机航拍低照度图像增强方法。首先通过高斯滤波预处理无人机航拍图像,实现无人机航拍图像中的噪声抑制,将预处理后的图像通过小波分解得到图像的高频参数和低频参数,分别通过双边滤波算法、软阈值方法和直方图对图像的低频参数和高频参数进行增强,采用小波重构对增强后的图像高频参数和低频参数进行重构,得到增强后的无人机航拍图像。通过实验验证,该方法能够实现一种效果较好的图像增强,在原始图像基础上,通过文中方法增强原始亮度8.14%、对比度提高了37.90%以及清晰度增加了31.01%,使得图像的整体质量得到了显著提升,为后续的图像分析、处理提供了更加准确、丰富的信息。 展开更多
关键词 无人机航拍 低照度图像增强 高斯滤波 小波分解与重构 双边滤波算法 软阈值方法
在线阅读 下载PDF
考虑进站策略的网联电动公交车节能驾驶优化研究 被引量:1
19
作者 南斯睿 于谦 +2 位作者 李铁柱 尚赞娣 陈海波 《交通运输系统工程与信息》 北大核心 2025年第2期82-94,共13页
针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学... 针对公交车在进出站和信号交叉口高能耗的问题,本文提出一种考虑进站策略的节能驾驶优化方法。首先,基于利用城市交通能力仿真(Simulation of Urban Mobility, SUMO)平台搭建智能网联场景,构建能够反映能耗、行驶效率和安全性的强化学习复合奖励函数;其次,将进站策略和预设交通规则作为约束集成于柔性演员-评论家(Soft Actor-Critic, SAC)深度强化学习框架中,优化车辆进出站及接近信号交叉口的轨迹;最后,以实际行驶、基于深度Q网络(Deep Q-Network, DQN)算法常规、基于SAC算法、基于规则约束和DQN算法(DQN-ruled)的优化方法作为基准方案,与本文提出的基于规则约束和SAC算法(SAC-ruled)的优化方法进行对比。结果表明:通过SAC-ruled算法优化后的驾驶轨迹在多种场景下均优于基准方案。在跟驰运动中,与基准方案相比,所设计的节能驾驶优化方法较基准方案的车辆能耗最高减少35.97%,行驶时间提升21.67%;在换道运动中,车辆能耗最多可降低41.40%,行驶时间提升16.94%。此外,通过敏感性分析验证,本文提出的基于SAC-ruled算法的节能驾驶优化方法在应对车流量波动方面表现出更强的适应性。本文建立的节能驾驶优化模型可集成节能辅助驾驶系统,鼓励驾驶员主动节能。 展开更多
关键词 智能交通 节能驾驶优化 深度强化学习 纯电动公交 柔性演员-评论家算法
在线阅读 下载PDF
基于变量选择和POA-NARX的SNCR脱硝系统出口NO_(x)浓度动态软测量模型
20
作者 赵征 梁磊 刘赛恒 《动力工程学报》 北大核心 2025年第4期592-601,共10页
针对垃圾焚烧炉选择性非催化还原(SNCR)脱硝系统内部工况不稳定、影响出口NO_(x)浓度因素多以及无法及时准确测量出口NO_(x)浓度等问题,提出了一种基于变量选择和鹈鹕优化算法-非线性自回归(POA-NARX)的SNCR脱硝系统出口NO_(x)浓度动态... 针对垃圾焚烧炉选择性非催化还原(SNCR)脱硝系统内部工况不稳定、影响出口NO_(x)浓度因素多以及无法及时准确测量出口NO_(x)浓度等问题,提出了一种基于变量选择和鹈鹕优化算法-非线性自回归(POA-NARX)的SNCR脱硝系统出口NO_(x)浓度动态软测量模型。通过机理分析SNCR脱硝系统出口NO_(x)浓度的影响因素,初筛特征变量;利用改进的快速相关过滤(FCBF)算法选择高相关变量,去除强冗余的变量;再利用数据趋势分析法和互信息算法进行迟延估计;最后利用鹈鹕优化算法确定最佳系统变量阶次,建立SNCR脱硝系统出口NO_(x)浓度动态软测量模型。实验结果表明:经过变量筛选和时滞分析的NARX动态模型准确性显著提升;POA-NARX模型的预测效果明显优于其他他软测量模型。 展开更多
关键词 垃圾焚烧炉 SNCR 快速相关过滤算法 NARX神经网络 鹈鹕优化算法 软测量
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部