To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s...To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.展开更多
The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the prope...The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.展开更多
Geopolymers of metakaolin and sodium silicate were synthesized respectively with the ratios of the amount of SiO2 in the sodium silica solution to that of Al2O3 in metakaolinite equal to 1.0, and 0.66. The geopolymeri...Geopolymers of metakaolin and sodium silicate were synthesized respectively with the ratios of the amount of SiO2 in the sodium silica solution to that of Al2O3 in metakaolinite equal to 1.0, and 0.66. The geopolymeric structures of the products were investigated by 27Al and 29Si solid-state nuclear magnetic resonances with magic-angle spinning (MAS NMR), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The reaction of the Al-O sheet in meakaolinite with low-order polymerized Si-O tetrahedral units such as monomer of SiO4 yields three-dimensional structures with the Q3 Si-O tetrahedral structure and the coordination of Al(IV) in the Al-O tetrahedral structure. The geopolymers are essentially X-ray amorphous. The assays by 27Al and 29Si NMR, FTIR confirm that the active structure in the metakaolinite is the sheet of Al-O with three coordination states.展开更多
The thermo-dynamics of reactions between carbonatite and sodium silicate solution at ordinary temperature (25℃) were investigated. The calculated results indicate that at ordinary temperature, the reactions between...The thermo-dynamics of reactions between carbonatite and sodium silicate solution at ordinary temperature (25℃) were investigated. The calculated results indicate that at ordinary temperature, the reactions between dolomite, calcite, Ca2+ and Mg2+ in carbonatite and H4SiO4, tl3SiO4- and H2SiO42- in sodium silicate solution to form the cementitious products of hydrated calcium silicate or hydrated magnesium silicate all possibly happen; among these reactions, the reactions to form gyrolite (2CaO.3SiO2.2.5H2O) and serpentine (3MgO.2SiO2-2H20) are the most possible to occur. Further, the dissociation degree of dolomite and calcite and the activity of H3SiO4 , H2SiO42- and H4SiO4 ions are the key factors to influence the reactions.展开更多
基金financial support from the National Natural Science Foundation of China(No.52074364)。
文摘To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51874372).
文摘The properties of low-modulus(m≤1)sodium silicate and pre-desilication solutions in alkali systems were studied by measuring their electrical conductivity,viscosity,and surface tension.The results show that the property of high concentration pre-desilication solution is similar to that of sodium silicate solution.The electrical conductivity of sodium silicate solution increases with increasing the temperature and silica concentration but decreases with increasing the modulus.Further,the viscosity of the solution increases with increasing the silica concentration and linearly decreases with increasing the temperature,whereas its surface tension gradually decreases with increasing silica concentration and temperature,indicating that the sodium silicate solution is an oligomer with strong surface activity.At room temperature,the electrical conductivity and surface tension of sodium silicate solution are higher than those of pre-desilication solution,whereas its viscosity is smaller than that of pre-desilication solution.A turning point exists at a silica concentration of 44.7 g/L.When the silica concentration is less than 44.7 g/L,the ionic structure of the solution is dominated by monomeric silicate ions.In contrast,when the silica concentration changes from 44.7 to 50 g/L,the migration number of silicate anions significantly decreases.
文摘Geopolymers of metakaolin and sodium silicate were synthesized respectively with the ratios of the amount of SiO2 in the sodium silica solution to that of Al2O3 in metakaolinite equal to 1.0, and 0.66. The geopolymeric structures of the products were investigated by 27Al and 29Si solid-state nuclear magnetic resonances with magic-angle spinning (MAS NMR), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The reaction of the Al-O sheet in meakaolinite with low-order polymerized Si-O tetrahedral units such as monomer of SiO4 yields three-dimensional structures with the Q3 Si-O tetrahedral structure and the coordination of Al(IV) in the Al-O tetrahedral structure. The geopolymers are essentially X-ray amorphous. The assays by 27Al and 29Si NMR, FTIR confirm that the active structure in the metakaolinite is the sheet of Al-O with three coordination states.
基金Funded by the National Natural Science Foundation of China(No.51402057)
文摘The thermo-dynamics of reactions between carbonatite and sodium silicate solution at ordinary temperature (25℃) were investigated. The calculated results indicate that at ordinary temperature, the reactions between dolomite, calcite, Ca2+ and Mg2+ in carbonatite and H4SiO4, tl3SiO4- and H2SiO42- in sodium silicate solution to form the cementitious products of hydrated calcium silicate or hydrated magnesium silicate all possibly happen; among these reactions, the reactions to form gyrolite (2CaO.3SiO2.2.5H2O) and serpentine (3MgO.2SiO2-2H20) are the most possible to occur. Further, the dissociation degree of dolomite and calcite and the activity of H3SiO4 , H2SiO42- and H4SiO4 ions are the key factors to influence the reactions.