Patients with cheiro-oral syndrome(COS) often present with minor perioral and upper extremity sensory disturbances,which can be easily overlooked in busy emergency departments(EDs).^([1]) COS,a rare spectrum of stroke...Patients with cheiro-oral syndrome(COS) often present with minor perioral and upper extremity sensory disturbances,which can be easily overlooked in busy emergency departments(EDs).^([1]) COS,a rare spectrum of stroke syndromes,necessitates expeditious and aggressive modification of risk factors.展开更多
Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model...Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.展开更多
Modal analysis,which provides modal parameters including frequencies,damping ratios,and mode shapes,is essential for assessing structural safety in structural health monitoring.Automated operational modal analysis(AOM...Modal analysis,which provides modal parameters including frequencies,damping ratios,and mode shapes,is essential for assessing structural safety in structural health monitoring.Automated operational modal analysis(AOMA)offers a promising alternative to traditional methods that depend heavily on human intervention and engineering judgment.However,estimating structural dynamic properties and managing spurious modes remain challenging due to uncertainties in practical application conditions.To address this issue,we propose an automated modal identification approach comprising three key aspects:(1)identification of modal parameters using covariance-driven stochastic subspace identification;(2)automated interpretation of the stabilization diagram;(3)an improved self-adaptive algorithm for grouping physical modes based on ordering points to identify the clustering structure(OPTICS)combined with k-nearest neighbors(KNN).The proposed approach can play a crucial role in enabling real-time structural health monitoring without human intervention.A simulated 10-story shear frame was used to verify the methodology.Identification results from a cable-stayed bridge demonstrate the practicality of the proposed method for conducting AOMA in engineering practice.The proposed approach can automatically identify modal parameters with high accuracy,making it suitable for a real-time structural health monitoring framework.展开更多
With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynami...With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynamic drought index,a regional drought identifying system was developed for the watershed between the reach of the Yangtze River and Huaihe River in Anhui Province by using VC++ working platform and Access database.This drought identifying system would be very useful to forecast and early warn the happening of drought in this area.展开更多
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the dam...Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.展开更多
Many performance indices for parallel mechanism are put forward in the phase of dimensional synthesis,except for identifiability index,which determines the difficulty of kinematical calibration.If the dimensional para...Many performance indices for parallel mechanism are put forward in the phase of dimensional synthesis,except for identifiability index,which determines the difficulty of kinematical calibration.If the dimensional parameters are inappropriately selected,the existing methods for optimizing identifiability will not effectively work.Thus,with the aim of studying identifiability optimization in dimensional synthesis for 3-PRS mechanism,kinematics with structural errors is analyzed to provide theoretical bases for kinematical model.Then through a comparison of two 3-PRS mechanisms with different dimensional parameters,identifiability performance is proved to be necessary and feasible for optimization in the phase of dimensional design.Finally,an index δ is proposed to scale the identifiability performance.With the index,identifiability analysis and dimensional synthesis simulation in the whole workspace is completed.The index is verified to be correct and feasible,and based on the index,a procedure of dimensional synthesis,as well as an example set of non-dimensional parameters of 3-PRS mechanism,is proposed.The proposed identifiability index and design method can effectively introduce identifiability optimization into dimensional synthesis,and will obviously benefit later kinematical calibration.展开更多
In eukaryotic cells, initiation of protein translation is to recruit the ribosome to a specific mRNA, which is generally dependent on the 5' cap structure. However, protein translation can also be initiated in a cap-...In eukaryotic cells, initiation of protein translation is to recruit the ribosome to a specific mRNA, which is generally dependent on the 5' cap structure. However, protein translation can also be initiated in a cap-independent manner by using a cis-regulatory element termed the internal ribosome entry site (IRES). The first experimentally validated IRES was reported in the poliovirus (Pelletier and Sonenberg, 1988). Then eukaryotic cellular mRNAs were also validated to contain IRES elements.展开更多
We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For th...We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For the beam equation, the observations are the velocity and the angle velocity at the free end, while for the string equation, the observation is the velocity at the free end. In the framework of well-posed linear system theory, we show that both the density and the flexural rigidity of the beam, and the tension of the string, can be uniquely determined by the observations for all positive times. Moreover, a general constructive method is developed to show that the mass density and the elastic modulus of the string are not determined by the observation.展开更多
Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage...Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.展开更多
文摘Patients with cheiro-oral syndrome(COS) often present with minor perioral and upper extremity sensory disturbances,which can be easily overlooked in busy emergency departments(EDs).^([1]) COS,a rare spectrum of stroke syndromes,necessitates expeditious and aggressive modification of risk factors.
基金supported by the National Natural Science Foundation of China(62473020).
文摘Dear Editor,This letter presents a novel approach to the data-driven control of unknown nonlinear systems.By leveraging online sparse identification based on the Koopman operator,a high-dimensional linear system model approximating the actual system is obtained online.The upper bound of the discrepancy between the identified model and the actual system is estimated using real-time prediction error,which is then utilized in the design of a tube-based robust model predictive controller.The effectiveness of the proposed approach is validated by numerical simulation.
基金supported by the National Natural Science Foundation of China(No.52408200)the Natural Science Foundation of Jiangsu Province(No.BK20240996)+1 种基金China,the Suzhou Science and Technology Plan(Basic Research)Project(No.SJC2023002)China,and the Natural Science Research Projects of Colleges and Universities in Jiangsu Province(No.24KJB560022),China.
文摘Modal analysis,which provides modal parameters including frequencies,damping ratios,and mode shapes,is essential for assessing structural safety in structural health monitoring.Automated operational modal analysis(AOMA)offers a promising alternative to traditional methods that depend heavily on human intervention and engineering judgment.However,estimating structural dynamic properties and managing spurious modes remain challenging due to uncertainties in practical application conditions.To address this issue,we propose an automated modal identification approach comprising three key aspects:(1)identification of modal parameters using covariance-driven stochastic subspace identification;(2)automated interpretation of the stabilization diagram;(3)an improved self-adaptive algorithm for grouping physical modes based on ordering points to identify the clustering structure(OPTICS)combined with k-nearest neighbors(KNN).The proposed approach can play a crucial role in enabling real-time structural health monitoring without human intervention.A simulated 10-story shear frame was used to verify the methodology.Identification results from a cable-stayed bridge demonstrate the practicality of the proposed method for conducting AOMA in engineering practice.The proposed approach can automatically identify modal parameters with high accuracy,making it suitable for a real-time structural health monitoring framework.
基金Supported by Special Fund for Public Welfare Meteorology Industry (GYHY201106029)
文摘With the data of daily precipitation and daily evaporation,dynamic drought index was calculated and compared with the identification standard of drought grade to qualify the severity of drought.According to the dynamic drought index,a regional drought identifying system was developed for the watershed between the reach of the Yangtze River and Huaihe River in Anhui Province by using VC++ working platform and Access database.This drought identifying system would be very useful to forecast and early warn the happening of drought in this area.
基金Gansu Science and Technology Key Project under Grant No.2GS057-A52-008
文摘Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.
基金supported by National Natural Science Foundation of China (Grant No. 50775125)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2007AA042003,No. 2007AA041901)
文摘Many performance indices for parallel mechanism are put forward in the phase of dimensional synthesis,except for identifiability index,which determines the difficulty of kinematical calibration.If the dimensional parameters are inappropriately selected,the existing methods for optimizing identifiability will not effectively work.Thus,with the aim of studying identifiability optimization in dimensional synthesis for 3-PRS mechanism,kinematics with structural errors is analyzed to provide theoretical bases for kinematical model.Then through a comparison of two 3-PRS mechanisms with different dimensional parameters,identifiability performance is proved to be necessary and feasible for optimization in the phase of dimensional design.Finally,an index δ is proposed to scale the identifiability performance.With the index,identifiability analysis and dimensional synthesis simulation in the whole workspace is completed.The index is verified to be correct and feasible,and based on the index,a procedure of dimensional synthesis,as well as an example set of non-dimensional parameters of 3-PRS mechanism,is proposed.The proposed identifiability index and design method can effectively introduce identifiability optimization into dimensional synthesis,and will obviously benefit later kinematical calibration.
基金supported by the grants from National Natural Science Foundation of China (Nos. 61571223 and 61171191)
文摘In eukaryotic cells, initiation of protein translation is to recruit the ribosome to a specific mRNA, which is generally dependent on the 5' cap structure. However, protein translation can also be initiated in a cap-independent manner by using a cis-regulatory element termed the internal ribosome entry site (IRES). The first experimentally validated IRES was reported in the poliovirus (Pelletier and Sonenberg, 1988). Then eukaryotic cellular mRNAs were also validated to contain IRES elements.
基金the National Natural Science Foundation of China (No.K411331528)
文摘We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam eq~. ation Or a string equation, with one end clamped and with an input exerted on the other end. For the beam equation, the observations are the velocity and the angle velocity at the free end, while for the string equation, the observation is the velocity at the free end. In the framework of well-posed linear system theory, we show that both the density and the flexural rigidity of the beam, and the tension of the string, can be uniquely determined by the observations for all positive times. Moreover, a general constructive method is developed to show that the mass density and the elastic modulus of the string are not determined by the observation.
基金This work is supported by Nature Science Foundation of Peo-ple ' s Republic of China ( No.50045019).
文摘Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.