The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (3...The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (30.47°N, 90.65°E, 5800m a.s.l.), and the Guoqu Glacier on Mt. Geladaindong (GL) (33.95°N, 91.28°E, 5823m a.s.l.) over the Tibetan Plateau (TP). Variations of microparticle and major ions (e.g. Mg2+, Ca2+) concentrations in snowpits show that the values of the microparticles and ions in the non-monsoon seasons are much higher than those in the monsoon seasons. Annual flux of microparticle deposition at ER is lower than those at NQ and GL, which could be attributed to the long distance away from the possible dust source regions as well as the elevation for ER higher than the others. Compared with other remote areas, microparticle concentrations in the southern TP are much lower than those in the northern TP, but still much higher than those in Greenland and Antarctica. The seasonal and spatial microparticle variations are clearly related to the variations of atmospheric circulation according to the air mass 5-day backward trajectory analyses of HYSPLIT Model. Resultingly, the high microparticle values in snow are mainly attributed to the westerlies and the strong dust storm outbreaks on the TP, while the monsoon circulation brings great amount of precipitation from the Indian Ocean, thus reducing in the aerosol concentrations.展开更多
Snowpits samples were collected from three glaciers in the Longyearbyen region, Svalbard during March to May, 1996. Among major chemical species (Na +, K +, Ca 2+ , Mg 2+ , Cl -, NO - 3 and SO 2- 4)...Snowpits samples were collected from three glaciers in the Longyearbyen region, Svalbard during March to May, 1996. Among major chemical species (Na +, K +, Ca 2+ , Mg 2+ , Cl -, NO - 3 and SO 2- 4), Cl - and Na +, which come mainly from sea salt aerosol, are the dominant soluble impurities in snowpits. In dirty layers of snowpits (representing autumn), the crustal cation Ca 2+ has the highest concentration among all species. Thus, snowpits have been dated by high values of Ca 2+ concentrations and less negative δ 18 O, which represent autumn and summer layers respectively. Seasonal variations in concentrations of sea salt ions ( Na +, Mg 2+ and Cl -), SO 2- 4 and NO - 3 have been identified. Results indicate that concentrations of these ions show high value in spring and summer. The spring maximum value likely results from long range transport of marine aerosol from north Atlantic storms( Na +, Mg 2+ and Cl -) and mid latitude anthropogenic pollution (SO 2- 4 and NO - 3 ). In summer, high concentrations of the sea salt species are attributed to local marine aerosol. The summer SO 2- 4 maximum likely reflects a combination of local marine aerosol, high scavenging ratios, and oxidation of marine biogenic emissions. In comparison, NO - 3 maximum may reflect lightening in the atmosphere and high scavenging ratios. In general, the major ion concentrations in snowpits in Svalbard is high in comparison with those found in snowpits from other remote regions, such as Greenland, Antarctic and Qinghai Tibetan Plateau, especially for sea salt species.展开更多
Temperate glaciers are highly sensitive to variations in climate and environmental conditions.Investigating the chemical composition of dissolved organic matter(DOM)in glacier snow is essential for understanding its c...Temperate glaciers are highly sensitive to variations in climate and environmental conditions.Investigating the chemical composition of dissolved organic matter(DOM)in glacier snow is essential for understanding its characteristics,sources,and transformation processes within glacial systems.This study aims to elucidate the chemical composition and transformation of DOM in snow environment by analyzing samples collected from snowpits,surface snow,and snow meltwater at Baishui Glacier No.1 on Mt.Yulong during May and June.The average concentrations of dissolved organic carbon(DOC)in snow meltwater collected in May(1.63±0.63 mg L^(-1))and June(1.54±0.35 mg L^(-1))were both significantly higher than those measured in snowpit samples from May(0.74±0.10 mg L^(-1))and June(0.54±0.10 mg L^(-1)),as well as in surface snow samples from May(0.65±0.31 mg L^(-1))and June(0.69±0.30 mg L^(-1)).However,the concentrations of DOC in samples from the same category did not show significant variation between May and June.Using excitation-emission matrix(EEM)fluorescence spectroscopy coupled with parallel factor(PARAFAC)analysis,three protein-like components(C_(1),C_(2),and C_(3))and one humic-like component(C_(4))were identified.The protein-like components accounted for more than 75%of the total DOM in all snow samples,indicating that the fluorescent DOM originated from biological or microbial sources.Significant differences in the relative proportions of the four fluorescent components were observed between snowpit samples from May and June,whereas no significant variations were noted in the other sample types.Furthermore,a clear transformation from protein-like to humic-like components was observed during the transition from snowpits to snow meltwater.Further analysis using Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS)revealed that DOM in these snow samples was predominantly composed of aliphatic and peptide-like compounds(30.9%-50.9%),suggesting a substantial microbial contribution.FT-ICR MS data also demonstrated compositional shifts in DOM among snowpit,surface snow,and meltwater samples.Specifically,aliphatic and peptide-like compounds were progressively transformed into unsaturated compounds with high oxygen content,polyphenolic species,and condensed aromatic compounds during their transition from snowpit to meltwater.Therefore,the relative contribution of terrestrial-derived DOM increased during the transition from snowpit to snowmelt.Furthermore,an increase in heteroatom content in the DOM of meltwater samples indicated continuous chemical transformations likely driven by biological activity and/or photochemical processes during snowmelt and leaching.展开更多
基金supported by the National Natural Science Foundation of China (40830743,40771187)the National Basic Research Program of China (2005CB422004)the State Key Laboratory of Gryospheric Sciences (SKLCS- ZZ-2008-01)
文摘The work presents microparticle concentrations in snowpits from the East Rongbuk Glacier on Mt. Qomolangma (Everest) (ER) (28.02°N, 86.96°E, 6536 m a.s.l.), the Zhadang Glacier on Mt. Nyainqentanglha (NQ) (30.47°N, 90.65°E, 5800m a.s.l.), and the Guoqu Glacier on Mt. Geladaindong (GL) (33.95°N, 91.28°E, 5823m a.s.l.) over the Tibetan Plateau (TP). Variations of microparticle and major ions (e.g. Mg2+, Ca2+) concentrations in snowpits show that the values of the microparticles and ions in the non-monsoon seasons are much higher than those in the monsoon seasons. Annual flux of microparticle deposition at ER is lower than those at NQ and GL, which could be attributed to the long distance away from the possible dust source regions as well as the elevation for ER higher than the others. Compared with other remote areas, microparticle concentrations in the southern TP are much lower than those in the northern TP, but still much higher than those in Greenland and Antarctica. The seasonal and spatial microparticle variations are clearly related to the variations of atmospheric circulation according to the air mass 5-day backward trajectory analyses of HYSPLIT Model. Resultingly, the high microparticle values in snow are mainly attributed to the westerlies and the strong dust storm outbreaks on the TP, while the monsoon circulation brings great amount of precipitation from the Indian Ocean, thus reducing in the aerosol concentrations.
文摘Snowpits samples were collected from three glaciers in the Longyearbyen region, Svalbard during March to May, 1996. Among major chemical species (Na +, K +, Ca 2+ , Mg 2+ , Cl -, NO - 3 and SO 2- 4), Cl - and Na +, which come mainly from sea salt aerosol, are the dominant soluble impurities in snowpits. In dirty layers of snowpits (representing autumn), the crustal cation Ca 2+ has the highest concentration among all species. Thus, snowpits have been dated by high values of Ca 2+ concentrations and less negative δ 18 O, which represent autumn and summer layers respectively. Seasonal variations in concentrations of sea salt ions ( Na +, Mg 2+ and Cl -), SO 2- 4 and NO - 3 have been identified. Results indicate that concentrations of these ions show high value in spring and summer. The spring maximum value likely results from long range transport of marine aerosol from north Atlantic storms( Na +, Mg 2+ and Cl -) and mid latitude anthropogenic pollution (SO 2- 4 and NO - 3 ). In summer, high concentrations of the sea salt species are attributed to local marine aerosol. The summer SO 2- 4 maximum likely reflects a combination of local marine aerosol, high scavenging ratios, and oxidation of marine biogenic emissions. In comparison, NO - 3 maximum may reflect lightening in the atmosphere and high scavenging ratios. In general, the major ion concentrations in snowpits in Svalbard is high in comparison with those found in snowpits from other remote regions, such as Greenland, Antarctic and Qinghai Tibetan Plateau, especially for sea salt species.
基金supported by grants from the Sichuan Natural Science Foundation Project(2024NSFSC0793)Dagu Glacier Research Institute(Center)project of Aba Normal College(AS-DTPT 2023072)the support of Youth Innovation Promotion Association CAS(2021429)。
文摘Temperate glaciers are highly sensitive to variations in climate and environmental conditions.Investigating the chemical composition of dissolved organic matter(DOM)in glacier snow is essential for understanding its characteristics,sources,and transformation processes within glacial systems.This study aims to elucidate the chemical composition and transformation of DOM in snow environment by analyzing samples collected from snowpits,surface snow,and snow meltwater at Baishui Glacier No.1 on Mt.Yulong during May and June.The average concentrations of dissolved organic carbon(DOC)in snow meltwater collected in May(1.63±0.63 mg L^(-1))and June(1.54±0.35 mg L^(-1))were both significantly higher than those measured in snowpit samples from May(0.74±0.10 mg L^(-1))and June(0.54±0.10 mg L^(-1)),as well as in surface snow samples from May(0.65±0.31 mg L^(-1))and June(0.69±0.30 mg L^(-1)).However,the concentrations of DOC in samples from the same category did not show significant variation between May and June.Using excitation-emission matrix(EEM)fluorescence spectroscopy coupled with parallel factor(PARAFAC)analysis,three protein-like components(C_(1),C_(2),and C_(3))and one humic-like component(C_(4))were identified.The protein-like components accounted for more than 75%of the total DOM in all snow samples,indicating that the fluorescent DOM originated from biological or microbial sources.Significant differences in the relative proportions of the four fluorescent components were observed between snowpit samples from May and June,whereas no significant variations were noted in the other sample types.Furthermore,a clear transformation from protein-like to humic-like components was observed during the transition from snowpits to snow meltwater.Further analysis using Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS)revealed that DOM in these snow samples was predominantly composed of aliphatic and peptide-like compounds(30.9%-50.9%),suggesting a substantial microbial contribution.FT-ICR MS data also demonstrated compositional shifts in DOM among snowpit,surface snow,and meltwater samples.Specifically,aliphatic and peptide-like compounds were progressively transformed into unsaturated compounds with high oxygen content,polyphenolic species,and condensed aromatic compounds during their transition from snowpit to meltwater.Therefore,the relative contribution of terrestrial-derived DOM increased during the transition from snowpit to snowmelt.Furthermore,an increase in heteroatom content in the DOM of meltwater samples indicated continuous chemical transformations likely driven by biological activity and/or photochemical processes during snowmelt and leaching.