This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of sim...This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipita- tion in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the fi'ozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer pre- cipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence caus- ing more summer precipitation in northern China but less in southem China.展开更多
The presence of a thick snowpack could interfere with forest stability, especially on steep slopes with potential damages for young and old stands. The study of snow gliding in forests is rather complex be- cause this...The presence of a thick snowpack could interfere with forest stability, especially on steep slopes with potential damages for young and old stands. The study of snow gliding in forests is rather complex be- cause this phenomenon could be influenced not only by forest features, but also by snow/soil interface characteristics, site morphology, meteoro- logical conditions and snow physical properties. Our starting hypothesis is that different forest stands have an influence on the snowpack evolu- tion and on the temperature and moisture at the snow/soil interface, which subsequently could affect snow gliding processes and snow forces. The aim of this work is therefore to analyse the snowpack evolution and snow gliding movements under different forest covers, in order to deter- mine the snow forces acting on single trees.展开更多
Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influen...Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influencing biodiversity and ecosystem function.Snowfall is a form of precipitation in winter,and snow melting can recharge soil water and result in a flourish of ephemerals during springtime in the Gurbantunggut Desert,China.A bi-factor experiment was designed and deployed during the snow-covering season from 2009 to 2010.The experiment aimed to explore the effects of different snow-covering depths and N addition levels on ephemerals.Findings indicated that deeper snow cover led to the increases in water content in topsoil as well as density and coverage of ephemeral plants in the same N treatment; by contrast,N addition sharply decreased the density of ephemerals in the same snow treatment.Meanwhile,N addition exhibited a different effect on the growth of ephemeral plants:in the 50% snow treatment,N addition limited the growth of ephemeral plants,showing that the height and the aboveground biomass of the ephemeral plants were lower than in those without N addition; while with the increases in snow depth (100% and 150% snow treatments),N addition benefited the growth of the dominant individual plants.Species richness was not significantly affected by snow in the same N treatment.However,N addition significantly decreased the species richness in the same snow-covering depth.The primary productivity of ephemerals in the N addition increased with the increase of snow depth.These variations indicated that the effect of N on the growth of ephemerals was restricted by water supply.With plenty of water (100% and 150% snow treatments),N addition contributed to the growth of ephemeral plants; while with less water (50% snow treatment),N addition restricted the growth of ephemeral plants.展开更多
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling...Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear. We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season. Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition. The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha 1 for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total. The highest emission rates (199.2- 257.4 μg m-2 h-1) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter. Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss. The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass. SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season. Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.展开更多
Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been c...Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.展开更多
多年冻土的活动层具有周期性的变化规律,使用传统测量方法监测冻土形变不能满足高精度、低成本连续观测的需求.GNSS定位技术可以很好解决这些问题,但使用传统大地测量型接收机的监测系统成本较高,限制了该技术的普及.为提高冻土监测的...多年冻土的活动层具有周期性的变化规律,使用传统测量方法监测冻土形变不能满足高精度、低成本连续观测的需求.GNSS定位技术可以很好解决这些问题,但使用传统大地测量型接收机的监测系统成本较高,限制了该技术的普及.为提高冻土监测的普适性,本文提出使用监测专用的北斗/GNSS接收机结合供电系统以及物联网技术组成一套冻土综合监测系统.通过精密单点定位(precise point positioning,PPP)技术获取冻土地面形变并反演大气可降水量(precipitable water vapor,PWV),并利用全球导航卫星系统干涉反射(Global Navigation Satellite System Interferometric Reflectometry,GNSS-IR)技术反演冻土区域地表环境参数,实现冻土区域多参数的综合监测,为保证GNSS数据的质量,使用Anubis软件对观测文件的数据质量进行了综合分析.结果显示在正常情况下观测数据的信噪比(signal-to-noise ratio,SNR)和多路径误差满足要求,数据完整率较低,部分观测数据的周跳比较高,利用四系统融合解算得到的冻土形变在精度和稳定性上相较于单北斗和单GPS系统都更好,多系统融合获得的PWV和雪深序列能够较好的反映测站环境的变化,土壤湿度反演结果与ERA5土壤湿度产品能够较好的匹配.该北斗/GNSS监测系统为监测冻土地区地面形变和环境参数提供了一种高效且经济的方案,为冻土灾害预警、冻土退化评估等提供数据支持的同时,拓展了北斗/GNSS在冻土地区监测的应用价值.展开更多
基金supported by the National Key Basic Research Program (No. 2007CB411505)the National Natural Science Foundation (No. 40705031)
文摘This paper presents an analysis of the mechanisms and impacts of snow cover and frozen soil in the Tibetan Plateau on the sum- mer precipitation in China, using RegCM3 version 3.1 model simulations. Comparisons of simulations vs. observations show that RegCM3 well captures these impacts. Results indicate that in a more-snow year with deep frozen soil there will be more precipita- tion in the Yangtze River Basin and central Northwest China, western Inner Mongolia, and Xinjiang, but less precipitation in Northeast China, North China, South China, and most of Southwest China. In a less-snow year with deep frozen soil, however, there will be more precipitation in Northeast China, North China, and southern South China, but less precipitation in the Yangtze River Basin and in northern South China. Such differences may be attributed to different combination patterns of melting snow and thawing frozen soil on the Plateau, which may change soil moisture as well as cause differences in energy absorption in the phase change processes of snow cover and frozen soil. These factors may produce more surface sensible heat in more-snow years when the fi'ozen soil is deep than when the frozen soil is shallow. The higher surface sensible heat may lead to a stronger updraft over the Plateau, eventually contributing to a stronger South Asia High and West Pacific Subtropical High. Due to different values of the wind fields at 850 hPa, a convergence zone will form over the Yangtze River Basin, which may produce more summer pre- cipitation in the basin area but less precipitation in North China and South China. However, because soil moisture depends on ice content, in less-snow years with deep frozen soil, the soil moisture will be higher. The combination of higher frozen soil moisture with latent heat absorption in the phase change process may generate less surface sensible heat and consequently a weaker updraft motion over the Plateau. As a result, both the South Asia High and the West Pacific Subtropical High will be weaker, hence caus- ing more summer precipitation in northern China but less in southem China.
基金supported by the Project"Forêts de protection:techniques de gestion et innovation dans les Alpes occidentals" within the Operational Program ALCOTRA Italy-France 2009-2012)"
文摘The presence of a thick snowpack could interfere with forest stability, especially on steep slopes with potential damages for young and old stands. The study of snow gliding in forests is rather complex be- cause this phenomenon could be influenced not only by forest features, but also by snow/soil interface characteristics, site morphology, meteoro- logical conditions and snow physical properties. Our starting hypothesis is that different forest stands have an influence on the snowpack evolu- tion and on the temperature and moisture at the snow/soil interface, which subsequently could affect snow gliding processes and snow forces. The aim of this work is therefore to analyse the snowpack evolution and snow gliding movements under different forest covers, in order to deter- mine the snow forces acting on single trees.
基金funded by the National Basic Research Program of China(2009CB825102)the National Basic Research Program of China(2009CB421102E)+1 种基金the International Science & Technology Cooperation Program of China(2010DFA92720)the Natural Science Foundation of China(4117049)
文摘Water and nitrogen (N) inputs are considered as the two main limiting factors affecting plant growth.Changes in these inputs are expected to alter the structure and composition of the plant community,thereby influencing biodiversity and ecosystem function.Snowfall is a form of precipitation in winter,and snow melting can recharge soil water and result in a flourish of ephemerals during springtime in the Gurbantunggut Desert,China.A bi-factor experiment was designed and deployed during the snow-covering season from 2009 to 2010.The experiment aimed to explore the effects of different snow-covering depths and N addition levels on ephemerals.Findings indicated that deeper snow cover led to the increases in water content in topsoil as well as density and coverage of ephemeral plants in the same N treatment; by contrast,N addition sharply decreased the density of ephemerals in the same snow treatment.Meanwhile,N addition exhibited a different effect on the growth of ephemeral plants:in the 50% snow treatment,N addition limited the growth of ephemeral plants,showing that the height and the aboveground biomass of the ephemeral plants were lower than in those without N addition; while with the increases in snow depth (100% and 150% snow treatments),N addition benefited the growth of the dominant individual plants.Species richness was not significantly affected by snow in the same N treatment.However,N addition significantly decreased the species richness in the same snow-covering depth.The primary productivity of ephemerals in the N addition increased with the increase of snow depth.These variations indicated that the effect of N on the growth of ephemerals was restricted by water supply.With plenty of water (100% and 150% snow treatments),N addition contributed to the growth of ephemeral plants; while with less water (50% snow treatment),N addition restricted the growth of ephemeral plants.
基金supported by the National Science and Technology Major Project of China (2014ZX07201-009)
文摘Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear. We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season. Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition. The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha 1 for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total. The highest emission rates (199.2- 257.4 μg m-2 h-1) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter. Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss. The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass. SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season. Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.
基金supported by the National Natural Science Foundation of China (41201441,41371363,41301501)Foundation of Director of Institute of Remote Sensing and Digital Earth,Chinese Academy of Science (Y4SY0200CX)Guangxi Key Laboratory of Spatial Information and Geomatics (1207115-18)
文摘Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.
文摘多年冻土的活动层具有周期性的变化规律,使用传统测量方法监测冻土形变不能满足高精度、低成本连续观测的需求.GNSS定位技术可以很好解决这些问题,但使用传统大地测量型接收机的监测系统成本较高,限制了该技术的普及.为提高冻土监测的普适性,本文提出使用监测专用的北斗/GNSS接收机结合供电系统以及物联网技术组成一套冻土综合监测系统.通过精密单点定位(precise point positioning,PPP)技术获取冻土地面形变并反演大气可降水量(precipitable water vapor,PWV),并利用全球导航卫星系统干涉反射(Global Navigation Satellite System Interferometric Reflectometry,GNSS-IR)技术反演冻土区域地表环境参数,实现冻土区域多参数的综合监测,为保证GNSS数据的质量,使用Anubis软件对观测文件的数据质量进行了综合分析.结果显示在正常情况下观测数据的信噪比(signal-to-noise ratio,SNR)和多路径误差满足要求,数据完整率较低,部分观测数据的周跳比较高,利用四系统融合解算得到的冻土形变在精度和稳定性上相较于单北斗和单GPS系统都更好,多系统融合获得的PWV和雪深序列能够较好的反映测站环境的变化,土壤湿度反演结果与ERA5土壤湿度产品能够较好的匹配.该北斗/GNSS监测系统为监测冻土地区地面形变和环境参数提供了一种高效且经济的方案,为冻土灾害预警、冻土退化评估等提供数据支持的同时,拓展了北斗/GNSS在冻土地区监测的应用价值.