期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Enhanced robustness in constant modulus blind beamforming through L1-regularized state estimation with variable-splitting Kalman smoother and IEKS
1
作者 Chuanhui HAO Bin ZHANG Xubao SUN 《Chinese Journal of Aeronautics》 2025年第6期573-590,共18页
This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel a... This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel approach that incorporates an L1-regularizer term in BF weight state estimation. We start by explaining the CMBB formation mechanism under conditions where there is a mismatch in the far-field signal model. Subsequently, we reformulate the BF weight state estimation challenge using a method known as variable-splitting, turning it into a noise minimization problem. This problem combines both linear and nonlinear quadratic terms with an L1-regularizer that promotes the sparsity. The optimization strategy is based on a variable-splitting method, implemented using the Alternating Direction Method of Multipliers(ADMM). Furthermore, a variable-splitting framework is developed to enhance BF weight state estimation, employing a Kalman Smoother(KS) optimization algorithm. The approach integrates the Rauch-TungStriebel smoother to perform posterior-smoothing state estimation by leveraging prior data. We provide proof of convergence for both linear and nonlinear CMBB state estimation technology using the variable-splitting KS and the iterated extended Kalman smoother. Simulations corroborate our theoretical analysis, showing that the proposed method achieves robust stability and effective convergence, even when faced with signal model mismatches. 展开更多
关键词 State estimation Constant modulus blind beamforming Kalman smoother Alternating direction method of multipliers Variable-splitting optimizer
原文传递
Bridging element-free Galerkin and pluri-Gaussian simulation for geological uncertainty estimation in an ensemble smoother data assimilation framework
2
作者 Bogdan Sebacher Remus Hanea 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1683-1698,共16页
The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/op... The facies distribution of a reservoir is one of the biggest concerns for geologists,geophysicists,reservoir modelers,and reservoir engineers due to its high importance in the setting of any reliable decisionmaking/optimization of field development planning.The approach for parameterizing the facies distribution as a random variable comes naturally through using the probability fields.Since the prior probability fields of facies come either from a seismic inversion or from other sources of geologic information,they are not conditioned to the data observed from the cores extracted from the wells.This paper presents a regularized element-free Galerkin(R-EFG)method for conditioning facies probability fields to facies observation.The conditioned probability fields respect all the conditions of the probability theory(i.e.all the values are between 0 and 1,and the sum of all fields is a uniform field of 1).This property achieves by an optimization procedure under equality and inequality constraints with the gradient projection method.The conditioned probability fields are further used as the input in the adaptive pluri-Gaussian simulation(APS)methodology and coupled with the ensemble smoother with multiple data assimilation(ES-MDA)for estimation and uncertainty quantification of the facies distribution.The history-matching of the facies models shows a good estimation and uncertainty quantification of facies distribution,a good data match and prediction capabilities. 展开更多
关键词 Element free Galerkin(EFG) Adaptive pluri-Gaussian simulation(APS) Facies distribution estimation Ensemble smoother with multipledata assimilation(ESMDA)
原文传递
基于Super smoother和3σ原理的列车动态测试趋势性异常数据清洗方法与分析 被引量:8
3
作者 左建勇 冯富人 丁景贤 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第10期65-73,共9页
列车动态测试存在数据采集环境干扰大,重复成本高等问题,需要尽可能的从存在异常的数据中保留更多的有效信息。本文针对其中存在的长周期,低频率的趋势性异常数据清洗问题,首先介绍了一种基于Super smoother和3σ原理的数据清洗方法。... 列车动态测试存在数据采集环境干扰大,重复成本高等问题,需要尽可能的从存在异常的数据中保留更多的有效信息。本文针对其中存在的长周期,低频率的趋势性异常数据清洗问题,首先介绍了一种基于Super smoother和3σ原理的数据清洗方法。然后通过与其他常用异常数据清洗方法如神经网络,小波变换等的对比,分别从降噪处理,数据漂移处理,缺失数据补充处理和短暂快速异常波动处理四个方面对方法的数据清洗能力进行了分析和验证,结果表明清洗后数据的Pearson系数由0.785上升到0.923,方法在快速清洗和数据修补方面具有较大优势。最后以某城轨列车制动温升试验数据为例,对实际线路测试数据进行了数据清洗处理,结果表明方法能够较好的解决列车动态测试中存在的趋势性异常数据清洗问题。 展开更多
关键词 列车动态测试 趋势性异常数据 数据清洗 Super smoother方法
原文传递
Multi-sensor optimal weighted fusion incremental Kalman smoother 被引量:5
4
作者 SUN Xiaojun YAN Guangming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期262-268,共7页
In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and ... In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility. 展开更多
关键词 weighted fusion incremental Kalman filtering poor observation condition Kalman smoother global optimality
在线阅读 下载PDF
Range-Only UWB SLAM for Indoor Robot Localization Employing Multi-Interval EFIR Rauch-Tung-Striebel Smoother 被引量:1
5
作者 Yanli Gao Wanfeng Ma +2 位作者 Jing Cao Jianling Qu Yuan Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期1221-1237,共17页
For improving the localization accuracy,a multi-interval extended finite impulse response(EFIR)-based Rauch-Tung-Striebel(R-T-S)smoother is proposed for the range-only ultra wide band(UWB)simultaneous localization and... For improving the localization accuracy,a multi-interval extended finite impulse response(EFIR)-based Rauch-Tung-Striebel(R-T-S)smoother is proposed for the range-only ultra wide band(UWB)simultaneous localization and mapping(SLAM)for robot localization.In this mode,the EFIR R-T-S(ERTS)smoother employs EFIR filter as the forward filter and the R-T-S smoothing method to smooth the EFIR filter’s output.When the east or the north position is considered as stance,the ERTS is used to smooth the position directly.Moreover,the estimation of the UWB Reference Nodes’(RNs’)position is smoothed by the R-T-S smooth method in parallel.The test illustrates that the proposedmulti-interval ERTS smoothing for range-only UWB SLAMis able to provide accurate estimation.Compared with the EFIR filter,the proposed method improves the localization accuracy by about 25.35%and 40.66%in east and north directions,respectively. 展开更多
关键词 Robot localization ultra wide band Rauch-Tung-Striebel smoother extended FIR filter
在线阅读 下载PDF
Groundwater contaminant source identification based on iterative local update ensemble smoother 被引量:2
6
作者 YANG Ai-lin JIANG Si-min +3 位作者 LIU Jin-bing JIANG Qian-yun ZHOU Ting ZHANG Wen 《Journal of Groundwater Science and Engineering》 2020年第1期1-9,共9页
Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical gro... Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation,and is called groundwater contaminant source identification.This is a kind of typical groundwater inverse problem,and the solution is usually ill-posed.Especially considering the spatial variability of hydraulic conductivity field,the identification process is more challenging.In this paper,the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model(MT3DMS)and a data assimilation method(Iterative local update ensemble smoother,ILUES).In addition,Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction.In practical problems,the geostatistical method is usually used to characterize the hydraulic conductivity field,and only the contaminant source information is inversely calculated in the identification process.In this study,the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field.The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site,and ILUES has good performance in solving high-dimensional parameter inversion problems. 展开更多
关键词 Groundwater contamination Groundwater inverse problem Source identification Ensemble smoother Data assimilation
在线阅读 下载PDF
Square-root divided difference Rauch-Tung-Striebel smoother
7
作者 唐小军 尉建利 陈凯 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第5期36-40,共5页
A square-root version of the divided difference Rauch-Tung-Striebel (RTS) smoother is proposed in this paper. The square-root variant essentially propagates the square roots of the covariance matrices and can consiste... A square-root version of the divided difference Rauch-Tung-Striebel (RTS) smoother is proposed in this paper. The square-root variant essentially propagates the square roots of the covariance matrices and can consistently improve the numerical stability because all the resulting covariance matrices are guaranteed to stay positive semi-definite. Furthermore, the square-root form ensures reliable implementation in an embedded system with fixed or limited precision although it is algebraically equivalent to the standard form. The new smoothing algorithm is tested in a challenging two-dimensional maneuvering target tracking problem with unknown and time-varying turn rate, and its performance is compared with that of other de-facto standard filters and smoothers. The simulation results indicate that the proposed RTS smoother markedly outperforms the associated filters and gives slightly smaller error than an unscented-based RTS smoother. 展开更多
关键词 Gaussian Rauch-Tung-Striebel smoother square-root divided difference filter fixed-interval smoothing state estimation
在线阅读 下载PDF
Optimal and suboptimal white noise smoothers for nonlinear stochastic systems
8
作者 王小旭 潘泉 +1 位作者 梁彦 程咏梅 《Journal of Central South University》 SCIE EI CAS 2013年第3期655-662,共8页
A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optima... A new approach of smoothing the white noise for nonlinear stochastic system was proposed. Through presenting the Gaussian approximation about the white noise posterior smoothing probability density fimction, an optimal and unifying white noise smoothing framework was firstly derived on the basis of the existing state smoother. The proposed framework was only formal in the sense that it rarely could be directly used in practice since the model nonlinearity resulted in the intractability and infeasibility of analytically computing the smoothing gain. For this reason, a suboptimal and practical white noise smoother, which is called the unscented white noise smoother (UWNS), was further developed by applying unscented transformation to numerically approximate the smoothing gain. Simulation results show the superior performance of the proposed UWNS approach as compared to the existing extended white noise smoother (EWNS) based on the first-order linearization. 展开更多
关键词 nonlinear stochastic system white noise smoother optimal framework unscented transformation
在线阅读 下载PDF
Smoother manifold for graph meta-learning
9
作者 ZHAO Wencang WANG Chunxin XU Changkai 《High Technology Letters》 EI CAS 2022年第1期48-55,共8页
Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain d... Meta-learning provides a framework for the possibility of mimicking artificial intelligence.How-ever,data distribution of the training set fails to be consistent with the one of the testing set as the limited domain differences among them.These factors often result in poor generalization in existing meta-learning models.In this work,a novel smoother manifold for graph meta-learning(SGML)is proposed,which derives the similarity parameters of node features from the relationship between nodes and edges in the graph structure,and then utilizes the similarity parameters to yield smoother manifold through embedded propagation module.Smoother manifold can naturally filter out noise from the most important components when generalizing the local mapping relationship to the global.Besides suiting for generalizing on unseen low data issues,the framework is capable to easily perform transductive inference.Experimental results on MiniImageNet and TieredImageNet consistently show that applying SGML to supervised and semi-supervised classification can improve the performance in reducing the noise of domain shift representation. 展开更多
关键词 META-LEARNING smoother manifold similarity parameter graph structure
在线阅读 下载PDF
Design of RLS Wiener Smoother and Filter for Colored Observation Noise in Linear Discrete-Time Stochastic Systems
10
作者 Seiichi Nakamori 《Journal of Signal and Information Processing》 2012年第3期316-329,共14页
Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored no... Almost estimators are designed for the white observation noise. In the estimation problems, rather than the white observation noise, there might be actual cases where the observation noise is modeled by the colored noise process. This paper examines to design a new estimation technique of recursive least-squares (RLS) Wiener fixed-point smoother and filter for colored observation noise in linear discrete-time wide-sense stationary stochastic systems. The observation y(k) is given as the sum of the signal z(k)=Hx(k) and the colored observation noise vc(k). The RLS Wiener estimators explicitly require the following information: 1) the system matrix for the state vector x(k);2) the observation matrix H;3) the variance of the state vector x(k);4) the system matrix for the colored observation noise vc(k);5) the variance of the colored observation noise;6) the input noise variance in the state equation for the colored observation noise. 展开更多
关键词 Discrete-Time Stochastic System RLS WIENER Filte RLS WIENER FIXED-POINT smoother COLORED OBSERVATION Noise COVARIANCE Information
在线阅读 下载PDF
A novel variable-lag probability hypothesis density smoother for multi-target tracking
11
作者 Li Yue Zhang Jianqiu Yin Jianjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1029-1037,共9页
It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show ... It is understood that the forward-backward probability hypothesis density (PHD) smoothing algorithms proposed recently can significantly improve state estimation of targets. However, our analyses in this paper show that they cannot give a good cardinality (i.e., the number of targets) estimate. This is because backward smoothing ignores the effect of temporary track drop- ping caused by forward filtering and/or anomalous smoothing resulted from deaths of targets. To cope with such a problem, a novel PHD smoothing algorithm, called the variable-lag PHD smoother, in which a detection process used to identify whether the filtered cardinality varies within the smooth lag is added before backward smoothing, is developed here. The analytical results show that the proposed smoother can almost eliminate the influences of temporary track dropping and anomalous smoothing, while both the cardinality and the state estimations can significantly be improved. Simulation results on two multi-target tracking scenarios verify the effectiveness of the proposed smoother. 展开更多
关键词 Dynamic models Probability hypothesis density (PHD) Random finite sets smoother Target tracking
原文传递
New smoothed-state estimation for correlated process and measurement noises
12
作者 Fu-Xi Chen Li-Hui Geng +1 位作者 Brett Ninness Yong-Li Zhang 《Control Theory and Technology》 2025年第2期176-192,共17页
This paper addresses the computational problem of fixed-interval smoothing state estimation in linear time-varying Gaussian stochastic systems.A new fixed-interval Kalman smoothing algorithm is proposed,and the corres... This paper addresses the computational problem of fixed-interval smoothing state estimation in linear time-varying Gaussian stochastic systems.A new fixed-interval Kalman smoothing algorithm is proposed,and the corresponding form of the smoother is derived.The method is able to accommodate situations where process and measurement noises are correlated,a limitation often encountered in conventional approaches.The Kalman smoothing problem discussed in this paper can be reformulated as an equivalent constrained optimization problem,where the solution corresponds to a set of linear equations defined by a specific co-efficient matrix.Through multiple permutations,the co-efficient matrix of linear equations is transformed into a block tridiagonal form,and then both sides of the linear system are multiplied by the inverse of the co-efficient matrix.This approach is based on the transformation of linear systems described in the SPIKE algorithm and is particularly well-suited for large-scale sparse block tridiagonal matrix structures.It enables efficient,parallel,and flexible solutions while maintaining a certain degree of block diagonal dominance.Compared to directly solving block tridiagonal co-efficient matrices,this method demonstrates appreciable advantages in terms of numerical stability and computational efficiency.Consequently,the new smoothing algorithm yields a new smoother that features fewer constraints and broader applicability than traditional methods.The estimates,such as smoothed state,covariance,and cross-covariance,are essential for fields,such as system identification,navigation,guidance,and control.Finally,the effectiveness of the proposed smoothing algorithm and smoother is validated through numerical simulations. 展开更多
关键词 New Kalman smoother Correlated noises Fixed interval Linear time-varying system SPIKE algorithm
原文传递
相关性阻滞作用对局域化迭代集合平滑估计渗透系数的影响
13
作者 夏传安 高欣宇 +1 位作者 王浩 简文彬 《工程地质学报》 北大核心 2025年第2期733-743,共11页
基于相关性的局域化集合数据同化方法适用于观测信息与反演参数之间不存在物理距离时的情形,但参数的反演精度受阻滞作用影响。为了厘清相关性阻滞作用对局域化迭代集合平滑估计渗透系数的影响,本文采用不同的集合大小N,相关系数(包括Pe... 基于相关性的局域化集合数据同化方法适用于观测信息与反演参数之间不存在物理距离时的情形,但参数的反演精度受阻滞作用影响。为了厘清相关性阻滞作用对局域化迭代集合平滑估计渗透系数的影响,本文采用不同的集合大小N,相关系数(包括Pearson,Kendall和Spearman)、和阻滞函数(包括12种函数)构建局域化迭代平滑方法用于估计二维孔隙承压含水层的渗透系数场。研究结果显示:(1)使用Pearson相关系数得到的渗透系数反演精度最高,其次为Spearman;(2)当考虑椭圆方程分别与Gaspari-Cohn,双曲正切函数和指数函数组合的复合函数作为阻滞函数时,局域化效果总体优于其他组合的阻滞函数。本文提出的相关性局域化迭代集合平滑方法框架和研究结果可为水文地质参数估计的研究与应用提供重要的参考。 展开更多
关键词 相关性局域化 迭代集合平滑 相关系数 阻滞函数
在线阅读 下载PDF
基于噪声特性估计的气动系数辨识方法
14
作者 汪清 郑凤麒 +1 位作者 丁娣 岳茜 《航空学报》 北大核心 2025年第7期93-109,共17页
利用飞行试验数据验证和修正风洞气动力数据库,是飞行器设计与评估的一个重要环节。针对飞行试验普遍没有角加速度测量的情况,发展了一种新的气动系数辨识方法。首先将气动系数的时间导数建模为一阶Gauss-Markov过程,从而构建了气动系... 利用飞行试验数据验证和修正风洞气动力数据库,是飞行器设计与评估的一个重要环节。针对飞行试验普遍没有角加速度测量的情况,发展了一种新的气动系数辨识方法。首先将气动系数的时间导数建模为一阶Gauss-Markov过程,从而构建了气动系数辨识数学模型。然后,从似然函数最大化出发,通过理论推导给出了过程噪声和测量噪声协方差等未知统计量的解析表达式。采用平方根无迹Kalman滤波器(SRUKF)和无迹Rauch-Tung-Striebel平滑器(URTSS)进行状态估计。根据状态估计结果显式计算未知统计量并迭代修正,从而获得气动系数(作为增广状态变量)时间历程的辨识结果。2个飞机气动系数辨识算例演示了该方法的有效性。算例表明,该方法能够较好地估计未知统计量,给出合理的气动系数辨识结果。此外,该方法具有良好的收敛鲁棒性,不依赖于未知统计量的初始估计。 展开更多
关键词 气动系数辨识 噪声协方差 平方根无迹Kalman滤波器 无迹Rauch-Tung-Striebel平滑器 似然函数 飞行试验 气动参数估计
原文传递
基于深度学习的参数估计方法在土壤参数估计中的应用
15
作者 冯薇 南统超 施睿 《节水灌溉》 北大核心 2025年第1期102-111,共10页
土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator w... 土壤参数是模拟和计算土壤含水量等状态数据的重要因子,对农业管理及其研究具有重要意义。然而,由于土壤系统变饱和与非线性特征,现有主流数据同化方法估计土壤参数时仍面临挑战。采用基于深度学习的参数估计方法(Parameter Estimator with Deep Learning,PEDL)对土壤参数进行反演估计,通过两个理想算例验证PEDL估计土壤参数的效果,并与集合平滑多数据同化方法(Ensemble Smoother with Multiple Data Assimilation,ESMDA)进行了系统比较。研究结果表明:PEDL能成功识别观测数据与待估参数之间的非线性关系,无需迭代即可逼近土壤参数的真实值;PEDL获得的参数后验分布范围相较于ESMDA明显缩小;与迭代5次的ESMDA方法相比,PEDL估计结果不确定性更低,且总调用次数更少。该研究有助于提高土壤参数估计的精度,可有效提升土壤状态及相关农业模型预测可靠性。 展开更多
关键词 土壤参数 深度学习 数据同化 集合平滑 非饱和带
在线阅读 下载PDF
Simultaneous estimation of surface soil moisture and soil properties with a dual ensemble Kalman smoother 被引量:1
16
作者 CHU Nan HUANG ChunLin +1 位作者 LI Xin DU PeiJun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第12期2327-2339,共13页
In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moi... In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation. 展开更多
关键词 soil moisture soil properties data assimilation state-parameter estimation dual ensemble Kalman smoother
原文传递
基于多传感器融合的污水管道机器人定位系统
17
作者 李翰林 江月明 +1 位作者 安腾飞 刘文黎 《科学技术与工程》 北大核心 2025年第26期11252-11259,共8页
污水管道系统作为城市公共基础设施重要的一部分,需定期对其检测以维持正常功能,由于污水管道环境特殊,现有技术难以检测管内情况。提出了一种污水管道机器人定位系统,可定位管内机器人和管道缺陷的位置。针对污水管道普遍高水位或满水... 污水管道系统作为城市公共基础设施重要的一部分,需定期对其检测以维持正常功能,由于污水管道环境特殊,现有技术难以检测管内情况。提出了一种污水管道机器人定位系统,可定位管内机器人和管道缺陷的位置。针对污水管道普遍高水位或满水的现状,该系统以动力声呐机器人为载体,并提出一种UKF-RTS算法,融合惯性测量单元(inertial measurement unit,IMU)和计米器两种传感器数据,计算出机器人位姿。设计实验对该系统进行了验证,结果表明,此系统可以精确定位机器人在管内的位置,准确计算出管道内缺陷的位置,精度可达4.6%,相较于单传感器系统和其他融合算法可达到更高的精度,结合单层声呐点云数据,可生成管道三维点云模型,具有较高实用价值。 展开更多
关键词 多传感器融合定位 污水管道 无迹卡尔曼滤波 RTS平滑 点云
在线阅读 下载PDF
Numerical Studies of Vanka-Type Smoothers in Computational Solid Mechanics
18
作者 Hilmar Wobker Stefan Turek 《Advances in Applied Mathematics and Mechanics》 SCIE 2009年第1期29-55,共27页
In this paper multigrid smoothers of Vanka-type are studied in the context of Computational Solid Mechanics(CSM).These smoothers were originally developed to solve saddle-point systems arising in the field of Comput... In this paper multigrid smoothers of Vanka-type are studied in the context of Computational Solid Mechanics(CSM).These smoothers were originally developed to solve saddle-point systems arising in the field of Computational Fluid Dynamics(CFD),particularly for incompressible flow problems.When treating(nearly)incompressible solids,similar equation systems arise so that it is reasonable to adopt the‘Vanka idea’for CSM.While there exist numerous studies about Vanka smoothers in the CFD literature,only few publications describe applications to solid mechanical problems.With this paper we want to contribute to close this gap.We depict and compare four different Vanka-like smoothers,two of them are oriented towards the stabilised equal-order Q_(1)/Q_(1)finite element pair.By means of different test configurations we assess how far the smoothers are able to handle the numerical difficulties that arise for nearly incompressible material and anisotropic meshes.On the one hand,we show that the efficiency of all Vanka-smoothers heavily depends on the proper parameter choice.On the other hand,we demonstrate that only some of them are able to robustly deal with more critical situations.Furthermore,we illustrate how the enclosure of the multigrid scheme by an outer Krylov space method influences the overall solver performance,and we extend all our examinations to the nonlinear finite deformation case. 展开更多
关键词 Coupled multigrid Vanka smoother linear and finite elasticity nearly incompressible material saddle point systems finite elements
在线阅读 下载PDF
基于厚尾双学生氏t分布的非线性状态空间系统鲁棒辨识方法
19
作者 刘鑫 海洋 代伟 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3052-3064,共13页
状态空间模型作为一种常见且重要的模型结构在自动化领域有着广泛的应用,本文针对异常值干扰下的非线性状态空间系统辨识问题开展研究.与现有的辨识方法不同,本文充分考虑了状态转移过程和输出量测过程均受到异常值干扰的情况,提出了一... 状态空间模型作为一种常见且重要的模型结构在自动化领域有着广泛的应用,本文针对异常值干扰下的非线性状态空间系统辨识问题开展研究.与现有的辨识方法不同,本文充分考虑了状态转移过程和输出量测过程均受到异常值干扰的情况,提出了一种更加全面的鲁棒辨识算法.首先利用两个相互独立的学生氏t分布分别对状态噪声和输出噪声进行建模以保障算法的鲁棒性;其次利用粒子平滑算法估计状态变量的后验概率分布以解决状态未知问题;最后利用期望最大化算法实现未知参数估计.在算法实现过程中使用了学生氏t分布表达式的数学分解,这样做的好处是:(1)更加有利于算法的推导和实现;(2)更清晰地解释了算法的鲁棒性能.并且本文通过数值算例和应用算例验证了该方法的有效性. 展开更多
关键词 非线性状态空间系统 鲁棒辨识 学生氏t分布 粒子平滑 期望最大化算法
在线阅读 下载PDF
基于相关性局域化迭代集合平滑反演渗透系数场 被引量:4
20
作者 夏传安 王浩 简文彬 《水文地质工程地质》 CSCD 北大核心 2024年第1期12-21,共10页
在地下水流和溶质运移问题中,有较多研究基于物理距离局域化集合同化方法反演水文地质参数。当反演参数与观测信息之间不存在物理距离时,这种方法不适用。为了克服这个局限,通过渗透系数与水头信息之间的相关性计算局域化方法的阻滞因子... 在地下水流和溶质运移问题中,有较多研究基于物理距离局域化集合同化方法反演水文地质参数。当反演参数与观测信息之间不存在物理距离时,这种方法不适用。为了克服这个局限,通过渗透系数与水头信息之间的相关性计算局域化方法的阻滞因子,构建基于相关性的局域化迭代集合平滑方法。为了方便比较,将该方法和一种基于物理距离的局域化迭代集合平滑一同用于同化水头信息反演二维孔隙承压含水层的渗透系数场。算例中考虑了不同集合大小、观测误差及观测数量等因子的组合,便于分析其对渗透系数反演精度的影响。研究结果显示:(1)在所有算例中新方法得到的渗透系数均方根误差范围为[0.8307,0.9590],都小于基于物理距离方法的均方根误差,范围为[0.8394,1.0000];(2)基于物理距离方法得到的渗透系数场空间上存在不连续性,而新方法的结果不存在此现象。文章提出了一种新的基于相关性局域化迭代平滑方法,该方法不需要依赖参数与观测信息之间的物理距离且参数反演精度高于基于物理距离的方法,可作为参数反演的科学工具。 展开更多
关键词 数据同化 相关性局域化 迭代集合平滑 物理距离局域化 渗透系数场
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部