Background Augmen ted reality(AR)smartglasses are considered as the next generation of smart devices to replace mobile phones,and are widely concerned.But at present,AR smartglasses are usually designed according to t...Background Augmen ted reality(AR)smartglasses are considered as the next generation of smart devices to replace mobile phones,and are widely concerned.But at present,AR smartglasses are usually designed according to the human normal eyes.In order to experience AR smartglasses perfectly,abnormal eye users must first wear diopters.Methods For people with astigmatism to use AR smartglasses without wearing a diopter lens,a cylindrical lens waveguide grating is designed in this study based on the principle of holographic waveguide grating.First,a cylindrical lens waveguide substrate is constructed for external light deflection to satisfy the users'normal viewing of the real world.Further,a variable period grating structure is established based on the cylindrical lens waveguide substrate to normally emit the light from the virtual world in the optical machine to the human eyes.Finally,the structural parameters of grating are optimized to improve the diffraction efficiency.Results The results show that the structure of cylindrical lens waveguide grating allows people with astigmatism to wear AR smartglasses directly.The total light utilization rate reaches 90%with excellent imaging uniformity.The brightness difference is less than 0.92%and the vertical field of view is 10°.Conclusions This research serves as a guide for AR product designs for people with long/short sightedness and promotes the development of such products.展开更多
This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introdu...This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introduction of ARSGs. We proposed an exploratory model based on the technology acceptance model by Davis. Exogenous factors in the model were defined by performing semi-structured in-depth interviews, along with the use of an expert panel in addition to the technology adoption literature. The framework was tested by means of a field study, data was collected via an Internet survey, and path analysis was used. The results indicate that there were a number of factors to be considered in order to understand ARSG adoption by physicians.Usefulness was influenced by ease of use, compatibility,ease of reminding, and speech recognition, while ease of use was affected by ease of learning, ease of medical education, external influence, and privacy. Privacy was the only negative factor that reduced the perceived ease of use,and was found to indirectly create a negative attitude.Compatibility emerged as the most significant external factor for usefulness. Developers of ARSGs should pay attention to healthcare-specific requirements for improved utilization and more extensive adoption of ARSGs in healthcare settings. In particular, they should focus on how to increase the compatibility of ARSGs. Further research needs to be conducted to explain the adoption intention of physicians.展开更多
文摘Background Augmen ted reality(AR)smartglasses are considered as the next generation of smart devices to replace mobile phones,and are widely concerned.But at present,AR smartglasses are usually designed according to the human normal eyes.In order to experience AR smartglasses perfectly,abnormal eye users must first wear diopters.Methods For people with astigmatism to use AR smartglasses without wearing a diopter lens,a cylindrical lens waveguide grating is designed in this study based on the principle of holographic waveguide grating.First,a cylindrical lens waveguide substrate is constructed for external light deflection to satisfy the users'normal viewing of the real world.Further,a variable period grating structure is established based on the cylindrical lens waveguide substrate to normally emit the light from the virtual world in the optical machine to the human eyes.Finally,the structural parameters of grating are optimized to improve the diffraction efficiency.Results The results show that the structure of cylindrical lens waveguide grating allows people with astigmatism to wear AR smartglasses directly.The total light utilization rate reaches 90%with excellent imaging uniformity.The brightness difference is less than 0.92%and the vertical field of view is 10°.Conclusions This research serves as a guide for AR product designs for people with long/short sightedness and promotes the development of such products.
文摘This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introduction of ARSGs. We proposed an exploratory model based on the technology acceptance model by Davis. Exogenous factors in the model were defined by performing semi-structured in-depth interviews, along with the use of an expert panel in addition to the technology adoption literature. The framework was tested by means of a field study, data was collected via an Internet survey, and path analysis was used. The results indicate that there were a number of factors to be considered in order to understand ARSG adoption by physicians.Usefulness was influenced by ease of use, compatibility,ease of reminding, and speech recognition, while ease of use was affected by ease of learning, ease of medical education, external influence, and privacy. Privacy was the only negative factor that reduced the perceived ease of use,and was found to indirectly create a negative attitude.Compatibility emerged as the most significant external factor for usefulness. Developers of ARSGs should pay attention to healthcare-specific requirements for improved utilization and more extensive adoption of ARSGs in healthcare settings. In particular, they should focus on how to increase the compatibility of ARSGs. Further research needs to be conducted to explain the adoption intention of physicians.