Smart home devices are vulnerable to a variety of attacks.The matter gets more complicated when a number of devices collaborate to launch a colluding attack(e.g.,Distributed-Denial-of-Service(DDoS))in a network(e.g.,S...Smart home devices are vulnerable to a variety of attacks.The matter gets more complicated when a number of devices collaborate to launch a colluding attack(e.g.,Distributed-Denial-of-Service(DDoS))in a network(e.g.,Smart home).To handle these attacks,most studies have hitherto proposed authentication protocols that cannot necessarily be implemented in devices,especially during Device-to-Device(D2D)interactions.Tapping into the potential of Ethereum blockchain and smart contracts,this work proposes a lightweight authentication mechanism that enables safe D2D interactions in a smart home.The Ethereum blockchain enables the implementation of a decentralized prototype as well as a peer-to-peer distributed ledger system.The work also uses a single server queuing system model and the authentication mechanism to curtail DDoS attacks by controlling the number of service requests in the system.The simulation was conducted twenty times,each with varying number of devices chosen at random(ranging from 1 to 30).Each requester device sends an arbitrary request with a unique resource requirement at a time.This is done to measure the system's consistency across a variety of device capabilities.The experimental results show that the proposed protocol not only prevents colluding attacks,but also outperforms the benchmark protocols in terms of computational cost,message processing,and response times.展开更多
针对物联网中设备资源受限、连接数量大、动态性强等特点,传统的集中式访问控制技术已不完全适用,如何在物联网环境中实现安全高效的访问控制授权成为亟待解决的关键问题.对此,提出一种基于层级区块链的物联网分布式体系架构(distribute...针对物联网中设备资源受限、连接数量大、动态性强等特点,传统的集中式访问控制技术已不完全适用,如何在物联网环境中实现安全高效的访问控制授权成为亟待解决的关键问题.对此,提出一种基于层级区块链的物联网分布式体系架构(distributed architecture based on hierarchical blockchain for Internet of things,DAHB).在该架构中以基于属性的访问控制(attribute-based access control,ABAC)模型为基础,采用智能合约的方式实现对物联网设备基于属性的域内和跨域的灵活、动态、自动化的访问控制.同时,在属性度量中增加信任值与诚实度动态评估不同域间和设备间的信任关系,保证实体能够履行合约的信用能力和稳定性.理论分析和实验结果表明:该方案比现有方案更有效解决物联网访问控制中存在的轻量级、灵活性、细粒度和安全性问题.展开更多
文摘Smart home devices are vulnerable to a variety of attacks.The matter gets more complicated when a number of devices collaborate to launch a colluding attack(e.g.,Distributed-Denial-of-Service(DDoS))in a network(e.g.,Smart home).To handle these attacks,most studies have hitherto proposed authentication protocols that cannot necessarily be implemented in devices,especially during Device-to-Device(D2D)interactions.Tapping into the potential of Ethereum blockchain and smart contracts,this work proposes a lightweight authentication mechanism that enables safe D2D interactions in a smart home.The Ethereum blockchain enables the implementation of a decentralized prototype as well as a peer-to-peer distributed ledger system.The work also uses a single server queuing system model and the authentication mechanism to curtail DDoS attacks by controlling the number of service requests in the system.The simulation was conducted twenty times,each with varying number of devices chosen at random(ranging from 1 to 30).Each requester device sends an arbitrary request with a unique resource requirement at a time.This is done to measure the system's consistency across a variety of device capabilities.The experimental results show that the proposed protocol not only prevents colluding attacks,but also outperforms the benchmark protocols in terms of computational cost,message processing,and response times.
文摘针对物联网中设备资源受限、连接数量大、动态性强等特点,传统的集中式访问控制技术已不完全适用,如何在物联网环境中实现安全高效的访问控制授权成为亟待解决的关键问题.对此,提出一种基于层级区块链的物联网分布式体系架构(distributed architecture based on hierarchical blockchain for Internet of things,DAHB).在该架构中以基于属性的访问控制(attribute-based access control,ABAC)模型为基础,采用智能合约的方式实现对物联网设备基于属性的域内和跨域的灵活、动态、自动化的访问控制.同时,在属性度量中增加信任值与诚实度动态评估不同域间和设备间的信任关系,保证实体能够履行合约的信用能力和稳定性.理论分析和实验结果表明:该方案比现有方案更有效解决物联网访问控制中存在的轻量级、灵活性、细粒度和安全性问题.