1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex...1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex and interactive process designs,modern plantwide systems are becoming increasingly sophisticated.The operation of these processes is typically characterized by the complexity of individual units(subsystems)and the intricate interactions between geographically distributed units through networks of material and energy flows,as well as control loops[1].展开更多
The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wid...The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.展开更多
A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the enti...A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the entire implanted hydrogen region during annealing.The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion.The hydrogen blister radius was studied as the function of annealing time,annealing temperature and implantation dose.The critical radius was obtained according to the Griffith energy condition.The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters.展开更多
An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,stru...An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,structure of this approach and suitable neural network algorithms are described.The results of simulation experiments are also given.展开更多
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia...Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.展开更多
We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elev...We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elevation tile format is used as the DEM format, which reduces the DEM data size. The PNG tile format implements client-based processing, and the DEM data are provided from different websites. In addition, the smart tile architecture is adopted, which enables on-demand simulation by adding a tile conversion process (<em>i.e.</em>, a DEM selection process) during image drawing by using JavaScript. To demonstrate the system, we have employed three DEMs,<em> i.e.</em>, the Geospatial Information Authority of Japan (GSI) map (~10-m resolution), the ASTER Global Digital Elevation Models (ASTER GDEM version 3) as global land area (~30-m resolution), and the General Bathymetric Chart of the Oceans as bathymetric data (~1000-m resolution). The ASTER Global Water Bodies Database is also used in the data selection process. The GSI provides their DEM in a PNG elevation tile format, and the other data are provided by the Geological Survey of Japan in PNG elevation tile format. We assume the current DEM sea level as 0 m, and the sea level can be changed to an arbitrary integer value (<span style="white-space:nowrap;">−</span>10,000 to 10,000 m). Combining ASTER GDEM for land and GEBCO for sea makes it possible to target DEM of the whole earth. Moreover, it was shown that if a higher resolution DEM is available, it is possible to combine the higher resolution DEM in that area. The combining the PNG elevation tile format with the smart tile architecture demonstrates the possibilities of a client-based web processing service like that of the server-based OGC Web Processing Service.展开更多
The Internet of Things becomes Internet of Everything when in the process of communication machine-to-machine also intelligent forms of communication between human and machine are involved. Cities can be viewed as a m...The Internet of Things becomes Internet of Everything when in the process of communication machine-to-machine also intelligent forms of communication between human and machine are involved. Cities can be viewed as a microcosm of this interconnected system where ICT and emerging technologies can be enabling factors to transform cities in Smart Cities. Cities can take great advantage by using information intelligence to achieve important public-policy goals and, in particular, by enabling network communication channels between citizens and public administrators in order to provide information and online services in real time through platform systems rather than by means of humans, using Artificial Intelligence and Natural Language Processing techniques. This work was the first step of a wider project aimed at providing a Spell Checking Web Service API for Smart City communication platforms able to automatically select, among the large availability of open source spell checking tools, the most suitable tool based on the semantic structure of the specific textual data. The system should manage an enhanced Italian Vocabulary Database, specifically implemented to support all the tools of the system. The goal of the present work was to test, through an experimental research, the feasibility of the entire project by implementing a Spell Checking Prototype System designed to manage two selected spell checking tools. Results showed that the Spell Checking Prototype System significantly improves performances by allowing the user to select the most suitable tool for the specific semantic structure of the text. The system also enables to manage the list of exceptions, which continuously enhance the Italian Vocabulary Database. The experimentation proved scientific evidence of the validity of the project aimed at implementing a Spell Checking Web Service API in order to improve the quality of natural language data to be stored or processed in Smart City NCeSDP systems, through the use of existing spell checking tools.展开更多
基金the National Natural Science Foundation of China(NSFC)(62103283)the Australia Research Council’s Discovery Pro-jects Scheme(DP220100355).
文摘1.Background In the chemical industry,process plants-commonly referred to as plantwide systems-typically consist of many process units(unit operations).Driven by the considerable economic efficiency offered by complex and interactive process designs,modern plantwide systems are becoming increasingly sophisticated.The operation of these processes is typically characterized by the complexity of individual units(subsystems)and the intricate interactions between geographically distributed units through networks of material and energy flows,as well as control loops[1].
文摘The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.
文摘A thermodynamic model of hydrogen induced silicon surface layer splitting with the help of an oxidized silicon wafer bonded is proposed.Wafer splitting is the result of lateral growth of hydrogen blisters in the entire implanted hydrogen region during annealing.The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion.The hydrogen blister radius was studied as the function of annealing time,annealing temperature and implantation dose.The critical radius was obtained according to the Griffith energy condition.The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters.
文摘An approach by using neural network signal processing in associate with embedded fiberoptic sensing array for the newly developed “smart material systems and structures” is discussed in this paper.The principle,structure of this approach and suitable neural network algorithms are described.The results of simulation experiments are also given.
基金Research funding from the Shanghai Municipal Education Commission in the framework of the oriental scholar and distinguished professor designationfunding from the National Natural Science Foundation of China(NSFC)
文摘Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.
文摘We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elevation tile format is used as the DEM format, which reduces the DEM data size. The PNG tile format implements client-based processing, and the DEM data are provided from different websites. In addition, the smart tile architecture is adopted, which enables on-demand simulation by adding a tile conversion process (<em>i.e.</em>, a DEM selection process) during image drawing by using JavaScript. To demonstrate the system, we have employed three DEMs,<em> i.e.</em>, the Geospatial Information Authority of Japan (GSI) map (~10-m resolution), the ASTER Global Digital Elevation Models (ASTER GDEM version 3) as global land area (~30-m resolution), and the General Bathymetric Chart of the Oceans as bathymetric data (~1000-m resolution). The ASTER Global Water Bodies Database is also used in the data selection process. The GSI provides their DEM in a PNG elevation tile format, and the other data are provided by the Geological Survey of Japan in PNG elevation tile format. We assume the current DEM sea level as 0 m, and the sea level can be changed to an arbitrary integer value (<span style="white-space:nowrap;">−</span>10,000 to 10,000 m). Combining ASTER GDEM for land and GEBCO for sea makes it possible to target DEM of the whole earth. Moreover, it was shown that if a higher resolution DEM is available, it is possible to combine the higher resolution DEM in that area. The combining the PNG elevation tile format with the smart tile architecture demonstrates the possibilities of a client-based web processing service like that of the server-based OGC Web Processing Service.
文摘The Internet of Things becomes Internet of Everything when in the process of communication machine-to-machine also intelligent forms of communication between human and machine are involved. Cities can be viewed as a microcosm of this interconnected system where ICT and emerging technologies can be enabling factors to transform cities in Smart Cities. Cities can take great advantage by using information intelligence to achieve important public-policy goals and, in particular, by enabling network communication channels between citizens and public administrators in order to provide information and online services in real time through platform systems rather than by means of humans, using Artificial Intelligence and Natural Language Processing techniques. This work was the first step of a wider project aimed at providing a Spell Checking Web Service API for Smart City communication platforms able to automatically select, among the large availability of open source spell checking tools, the most suitable tool based on the semantic structure of the specific textual data. The system should manage an enhanced Italian Vocabulary Database, specifically implemented to support all the tools of the system. The goal of the present work was to test, through an experimental research, the feasibility of the entire project by implementing a Spell Checking Prototype System designed to manage two selected spell checking tools. Results showed that the Spell Checking Prototype System significantly improves performances by allowing the user to select the most suitable tool for the specific semantic structure of the text. The system also enables to manage the list of exceptions, which continuously enhance the Italian Vocabulary Database. The experimentation proved scientific evidence of the validity of the project aimed at implementing a Spell Checking Web Service API in order to improve the quality of natural language data to be stored or processed in Smart City NCeSDP systems, through the use of existing spell checking tools.