期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Next-Gen Synergies Integrating AI-Driven Smart Grids,Fusion and Fission Nuclear Systems,and Green Energy for Zero-Carbon Sustainable Transportation:Advanced Technologies for Energy-Saving Sustainable Transportation Engineering
1
作者 Bahman Zohuri 《Journal of Energy and Power Engineering》 2025年第3期115-125,共11页
This article presents a comprehensive framework for advancing sustainable transportation through the integration of next-generation energy technologies.It explores the convergence of Vernova green energy,nuclear fissi... This article presents a comprehensive framework for advancing sustainable transportation through the integration of next-generation energy technologies.It explores the convergence of Vernova green energy,nuclear fission from ARCs(advanced reactor concepts)and SMRs(small modular reactors),and future-focused nuclear fusion methods-MCF(magnetic confinement fusion)and ICF(inertial confinement fusion).Central to this integration is the use of AI(artificial intelligence)to enhance smart grid efficiency,enable real-time optimization,and ensure resilient energy delivery.The synergy between these zero-carbon energy sources and AI-driven infrastructure promises a transformative impact on electric mobility,hydrogen-powered systems,and autonomous transport.By detailing the architecture of an AI-augmented,carbon-neutral transport ecosystem,this paper contributes to the roadmap for future global mobility. 展开更多
关键词 Sustainable transportation zero-carbon energy Vernova green energy ARCS SMRs MCF ICF AI smart grids energy-efficient mobility
在线阅读 下载PDF
AI-Enhanced Secure Data Aggregation for Smart Grids with Privacy Preservation
2
作者 Congcong Wang Chen Wang +1 位作者 Wenying Zheng Wei Gu 《Computers, Materials & Continua》 SCIE EI 2025年第1期799-816,共18页
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use... As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis. 展开更多
关键词 smart grid data security privacy protection artificial intelligence data aggregation
在线阅读 下载PDF
Improved PPO-Based Task Offloading Strategies for Smart Grids
3
作者 Qian Wang Ya Zhou 《Computers, Materials & Continua》 2025年第8期3835-3856,共22页
Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it mus... Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments. 展开更多
关键词 smart grid task offloading deep reinforcement learning improved PPO algorithm edge computing
在线阅读 下载PDF
Data Aggregation Point Placement and Subnetwork Optimization for Smart Grids
4
作者 Tien-Wen Sung Wei Li +2 位作者 Chao-Yang Lee Yuzhen Chen Qingjun Fang 《Computers, Materials & Continua》 2025年第4期407-434,共28页
To transmit customer power data collected by smart meters(SMs)to utility companies,data must first be transmitted to the corresponding data aggregation point(DAP)of the SM.The number of DAPs installed and the installa... To transmit customer power data collected by smart meters(SMs)to utility companies,data must first be transmitted to the corresponding data aggregation point(DAP)of the SM.The number of DAPs installed and the installation location greatly impact the whole network.For the traditional DAP placement algorithm,the number of DAPs must be set in advance,but determining the best number of DAPs is difficult,which undoubtedly reduces the overall performance of the network.Moreover,the excessive gap between the loads of different DAPs is also an important factor affecting the quality of the network.To address the above problems,this paper proposes a DAP placement algorithm,APSSA,based on the improved affinity propagation(AP)algorithm and sparrow search(SSA)algorithm,which can select the appropriate number of DAPs to be installed and the corresponding installation locations according to the number of SMs and their distribution locations in different environments.The algorithm adds an allocation mechanism to optimize the subnetwork in the SSA.APSSA is evaluated under three different areas and compared with other DAP placement algorithms.The experimental results validated that the method in this paper can reduce the network cost,shorten the average transmission distance,and reduce the load gap. 展开更多
关键词 smart grid data aggregation point placement network cost average transmission distance load gap
在线阅读 下载PDF
An Ethereum-based solution for energy trading in smart grids 被引量:3
5
作者 Francesco Buccafurri Gianluca Lax +1 位作者 Lorenzo Musarella Antonia Russo 《Digital Communications and Networks》 SCIE CSCD 2023年第1期194-202,共9页
The need for a flexible,dynamic,and decentralized energy market has rapidly grown in recent years.As a matter of fact,Industry 4.0 and Smart Grids are pursuing a path of automation of operations to insure all the step... The need for a flexible,dynamic,and decentralized energy market has rapidly grown in recent years.As a matter of fact,Industry 4.0 and Smart Grids are pursuing a path of automation of operations to insure all the steps among consumers and producers are getting closer.This leads towards solutions that exploit the paradigm of public blockchain,which represents the best platform to design flat and liquid markets for which providing trust and accountability to mutual interactions becomes crucial.On the other hand,one of the risks arising in this situation is that personal information is exposed to the network,with intolerable threats to privacy.In this paper,we propose a solution for energy trading,based on the blockchain Ethereum and Smart Contracts.The solution aims to be a concrete proposal to satisfy the needs of energy trading in smart grids,including the important feature that no information about the identity of the peers of the network is disclosed in advance. 展开更多
关键词 Blockchain smart contract ACCOUNTABILITY smart energy smart grids
在线阅读 下载PDF
Energy Theft Identification Using Adaboost Ensembler in the Smart Grids 被引量:2
6
作者 Muhammad Irfan Nasir Ayub +10 位作者 Faisal Althobiani Zain Ali Muhammad Idrees Saeed Ullah Saifur Rahman Abdullah Saeed Alwadie Saleh Mohammed Ghonaim Hesham Abdushkour Fahad Salem Alkahtani Samar Alqhtani Piotr Gas 《Computers, Materials & Continua》 SCIE EI 2022年第7期2141-2158,共18页
One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which make... One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques. 展开更多
关键词 smart grids and meters electricity theft detection machine learning ADABOOST optimization techniques
在线阅读 下载PDF
Co-Simulation of an SRG Wind Turbine Control and GPRS/EGPRS Wireless Standards in Smart Grids 被引量:1
7
作者 Andre Luiz de Oliveira Carlos Eduardo Capovilla +2 位作者 Ivan Roberto Santana Casella JoséLuis Azcue-Puma Alfeu J.Sguarezi Filho 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第3期656-663,共8页
Wind energy can be considered a push-driver factor in the integration of renewable energy sources within the concept of smart grids.For its full deployment,it requires a modern telecommunication infrastructure for tra... Wind energy can be considered a push-driver factor in the integration of renewable energy sources within the concept of smart grids.For its full deployment,it requires a modern telecommunication infrastructure for transmitting control signals around the distributed generation,in which,the wireless communication standards stand out for employing modern digital modulation and coding schemes for error correction,in order to guarantee the power plant operability.In some developing countries,such as Brazil,the high penetration of commercial mobile wireless standards GPRS and EGPRS(based on GSM technology)have captivated the interests of the energy sector,and they now seek to perform remote monitoring and control operations.In this context,this article presents a comparative performance analysis of a wireless control system for a wind SRG,when a GPRS or EGPRS data service is employed.The system performance is analyzed by co-simulations,including the wind generator dynamics and the wireless channel effects.The satisfactory results endorse the viability and robustness of the proposed system. 展开更多
关键词 General packet radio service(GPRS)/enhanced GPRS(EGPRS) smart grids switched reluctance generator(SRG) wind energy wireless communications
在线阅读 下载PDF
Active resilient defense control against false data injection attacks in smart grids
8
作者 Xiaoyuan Luo Lingjie Hou +3 位作者 Xinyu Wang Ruiyang Gao Shuzheng Wang Xinping Guan 《Control Theory and Technology》 EI CSCD 2023年第4期515-529,共15页
The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defe... The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system. 展开更多
关键词 Active resilient defense Attack detection Cyber attacks Cyber-attack detection Cyber grid elements Cyber threat False data injection attack smart grids security Interval observer
原文传递
A Distributed Power Trading Scheme Based on Blockchain and Artificial Intelligence in Smart Grids
9
作者 Yue Yu Junhua Wu +1 位作者 Guangshun Li Wangang Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期583-598,共16页
As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the po... As an emerging hot technology,smart grids(SGs)are being employed in many fields,such as smart homes and smart cities.Moreover,the application of artificial intelligence(AI)in SGs has promoted the development of the power industry.However,as users’demands for electricity increase,traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities.This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,electrical security,and other aspects.Accordingly,this study proposes a distributed power trading scheme based on blockchain and AI.To protect the legitimate rights and interests of consumers and producers,credibility is used as an indicator to restrict untrustworthy behavior.Simultaneously,the reliability and communication capabilities of nodes are considered in block verification to improve the transaction confirmation efficiency,and a weighted communication tree construction algorithm is designed to achieve superior data forwarding.Finally,AI sensors are set up in power equipment to detect electricity generation and transmission,which alert users when security hazards occur,such as thunderstorms or typhoons.The experimental results show that the proposed scheme can not only improve the trading security but also reduce system communication delays. 展开更多
关键词 smart grids blockchain artificial intelligence distributed trading data communication
在线阅读 下载PDF
Service-Oriented Advanced Metering Infrastructure for Smart Grids
10
作者 S. Chen J.J. Lukkien L. Zhang 《Journal of Energy and Power Engineering》 2011年第5期455-460,共6页
Advanced Metering Infrastructure (AMI) enables smart grids to involve power consumers in the business process of power generation transmission, distribution and consumption. However, the participant of consumers cha... Advanced Metering Infrastructure (AMI) enables smart grids to involve power consumers in the business process of power generation transmission, distribution and consumption. However, the participant of consumers challenges the current power systems with system integration and cooperation and security issues. In this paper, the authors introduce a service-oriented approach to AMI aiming at solving the intercommunication problem and meanwhile providing a trust and secure environment for smart grids. In this approach heterogeneous systems expose services to the network. System integration and cooperation are done through service composition. A generic service interfacing method is designed to develop standardized services for heterogeneous power systems. Moreover, role-based access control mechanism is used to guarantee the secure access to smart grids. With the seamless communication between consumers and power systems and among power systems themselves, this service-oriented AMI can associate consumers with actual system workload and furthermore support the intelligent running of power systems. 展开更多
关键词 smart grids AMI SERVICE-ORIENTED generic interfacing access control.
在线阅读 下载PDF
Smart Grids with Intelligent Periphery:An Architecture for the Energy Internet 被引量:24
11
作者 Felix F.Wu Pravin P.Varaiya Ron S.Y.Hui 《Engineering》 SCIE EI 2015年第4期436-446,共11页
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh... A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed. 展开更多
关键词 smart grid future grid Energy Internet energy- management system integrating renewables power system operation power system control distribution automation systems demand-side management
在线阅读 下载PDF
Price-Based Residential Demand Response Management in Smart Grids:A Reinforcement Learning-Based Approach 被引量:4
12
作者 Yanni Wan Jiahu Qin +2 位作者 Xinghuo Yu Tao Yang Yu Kang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期123-134,共12页
This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involv... This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involved.The PB-RDRM is composed of a bi-level optimization problem,in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company(UC)by selecting optimal retail prices(RPs),while the lower-level demand response(DR)problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior.The challenges here are mainly two-fold:1)the uncertainty of energy consumption and RPs;2)the flexible PEVs’temporally coupled constraints,which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM.To address these challenges,we first model the dynamic retail pricing problem as a Markovian decision process(MDP),and then employ a model-free reinforcement learning(RL)algorithm to learn the optimal dynamic RPs of UC according to the loads’responses.Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches(i.e.,distributed dual decomposition-based(DDB)method and distributed primal-dual interior(PDI)-based method),which require exact load and electricity price models.The comparison results show that,compared with the benchmark solutions,our proposed algorithm can not only adaptively decide the RPs through on-line learning processes,but also achieve larger social welfare within an unknown electricity market environment. 展开更多
关键词 Demand response management(DRM) Markovian decision process(MDP) Monte Carlo simulation reinforcement learning(RL) smart grid
在线阅读 下载PDF
Costs and Benefits of Smart Grids on Liberalized Markets 被引量:3
13
作者 Marek Adamec Pavel Pavlatka Oldrich Stary 《Journal of Electronic Science and Technology》 CAS 2012年第1期22-28,共7页
The discussion about smart grid (SG) implementation is mostly focused on pilot projects. These projects are necessary for mapping of particular technical devices of advanced metering management (AMM) which is need... The discussion about smart grid (SG) implementation is mostly focused on pilot projects. These projects are necessary for mapping of particular technical devices of advanced metering management (AMM) which is needed for successful SG and whole functional SG system operation. According to our opinion, for the next step of SG implementation, the participation of effective market design would be quite necessary. In other words, pilot project which is operated regardless to the market conditions and special SG tariff is incomplete and could be irrelevant for further evaluation of feasibility. With regard to above mentioned facts, the detailed cost-benefit-analysis (CBA) is needed to establish the correct methodology for evaluation of SG implementation effectiveness. Related aspects are mentioned and discussed in this paper, in which the particular cost and benefits as well as feedback that occurs as the reaction on implementation are summarized and quantified. 展开更多
关键词 Advanced metering management electricity market REGULATION smart grid system approach.
在线阅读 下载PDF
Energy Theft Detection in Smart Grids:Taxonomy,Comparative Analysis,Challenges,and Future Research Directions 被引量:1
14
作者 Mohsin Ahmed Abid Khan +4 位作者 Mansoor Ahmed Mouzna Tahir Gwanggil Jeon Giancarlo Fortino Francesco Piccialli 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第4期578-600,共23页
Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new ... Electricity theft is one of the major issues in developing countries which is affecting their economy badly.Especially with the introduction of emerging technologies,this issue became more complicated.Though many new energy theft detection(ETD)techniques have been proposed by utilising different data mining(DM)techniques,state&network(S&N)based techniques,and game theory(GT)techniques.Here,a detailed survey is presented where many state-of-the-art ETD techniques are studied and analysed for their strengths and limitations.Three levels of taxonomy are presented to classify state-of-the-art ETD techniques.Different types and ways of energy theft and their consequences are studied and summarised and different parameters to benchmark the performance of proposed techniques are extracted from literature.The challenges of different ETD techniques and their mitigation are suggested for future work.It is observed that the literature on ETD lacks knowledge management techniques that can be more effective,not only for ETD but also for theft tracking.This can help in the prevention of energy theft,in the future,as well as for ETD. 展开更多
关键词 CHALLENGES comparative analysis energy theft detection future research directions smart grid TAXONOMY
在线阅读 下载PDF
GPS Spoofing Attack Detection in Smart Grids Based on Improved CapsNet 被引量:1
15
作者 Yuancheng Li Shanshan Yang 《China Communications》 SCIE CSCD 2021年第3期174-186,共13页
This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to... This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to handle this attack.In the improved CapsNet,the gated recurrent unit(GRU)is added to the front of the full connection layer of the CapsNet.The improved CapsNet trains and updates the network parameters according to the historical measurements of the smart grid.The detection method uses different structures to extract the temporal and spatial features of the measurements simultaneously,which can accurately distinguish the attacked data from the normal data,to improve the detection accuracy.Finally,simulation experiments are carried out on IEEE 14-,IEEE 118-bus systems.The experimental results show that compared with other detection methods,our method is proved to be more efficient. 展开更多
关键词 smart grid detection method improved capsule neural network phasor measurement units global positioning system spoofing attack
在线阅读 下载PDF
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids 被引量:1
16
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
在线阅读 下载PDF
An evaluation model for smart grids in support of smart cities based on the Hierarchy of Needs Theory
17
作者 Hongyu Lin Wei Wang +1 位作者 Yajun Zou Hongyi Chen 《Global Energy Interconnection》 EI CSCD 2023年第5期634-644,共11页
Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which p... Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which presents opportunities to improve the cost-effectiveness of power supply and minimize environmental impacts.A systematic evaluation of the comprehensive benefits brought by smart grid to smart cities can provide necessary theoretical fundamentals for urban planning and construction towards a sustainable energy future.However,most of the present methods of assessing smart cities do not fully take into account the benefits expected from the smart grid.To comprehensively evaluate the development levels of smart cities while revealing the supporting roles of smart grids,this article proposes a model of smart city development needs from the perspective of residents’needs based on Maslow’s Hierarchy of Needs theory,which serves the primary purpose of building a smart city.By classifying and reintegrating the needs,an evaluation index system of smart grids supporting smart cities was further constructed.A case analysis concluded that smart grids,as an essential foundation and objective requirement for smart cities,are important in promoting scientific urban management,intelligent infrastructure,refined public services,efficient energy utilization,and industrial development and modernization.Further optimization suggestions were given to the city analyzed in the case include strengthening urban management and infrastructure constructions,such as electric vehicle charging facilities and wireless coverage. 展开更多
关键词 smart city smart grid Evaluation index system Hierarchy of needs Benefits of smart grid
在线阅读 下载PDF
RoGRUT: A Hybrid Deep Learning Model for Detecting Power Trapping in Smart Grids
18
作者 Farah Mohammad Saad Al-Ahmadi Jalal Al-Muhtadi 《Computers, Materials & Continua》 SCIE EI 2024年第5期3175-3192,共18页
Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the hig... Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%. 展开更多
关键词 Electricity theft smart grid RoBERTa GRU transfer learning
在线阅读 下载PDF
Fortifying Smart Grids: A Holistic Assessment Strategy against Cyber Attacks and Physical Threats for Intelligent Electronic Devices
19
作者 Yangrong Chen June Li +4 位作者 Yu Xia Ruiwen Zhang Lingling Li Xiaoyu Li Lin Ge 《Computers, Materials & Continua》 SCIE EI 2024年第8期2579-2609,共31页
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene... Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated. 展开更多
关键词 smart grid intelligent electronic device security assessment abnormal behaviors network traffic running states
在线阅读 下载PDF
Optimal Load Forecasting Model for Peer-to-Peer Energy Trading in Smart Grids
20
作者 Lijo Jacob Varghese K.Dhayalini +3 位作者 Suma Sira Jacob Ihsan Ali Abdelzahir Abdelmaboud Taiseer Abdalla Elfadil Eisa 《Computers, Materials & Continua》 SCIE EI 2022年第1期1053-1067,共15页
Peer-to-Peer(P2P)electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer.It also decreases the quantity of line loss incurred in Smart Grid(SG).But,uncertainiti... Peer-to-Peer(P2P)electricity trading is a significant research area that offers maximum fulfilment for both prosumer and consumer.It also decreases the quantity of line loss incurred in Smart Grid(SG).But,uncertainities in demand and supply of the electricity might lead to instability in P2P market for both prosumer and consumer.In recent times,numerous Machine Learning(ML)-enabled load predictive techniques have been developed,while most of the existing studies did not consider its implicit features,optimal parameter selection,and prediction stability.In order to overcome fulfill this research gap,the current research paper presents a new Multi-Objective Grasshopper Optimisation Algorithm(MOGOA)with Deep Extreme Learning Machine(DELM)-based short-term load predictive technique i.e.,MOGOA-DELM model for P2P Energy Trading(ET)in SGs.The proposed MOGOA-DELM model involves four distinct stages of operations namely,data cleaning,Feature Selection(FS),prediction,and parameter optimization.In addition,MOGOA-based FS technique is utilized in the selection of optimum subset of features.Besides,DELM-based predictive model is also applied in forecasting the load requirements.The proposed MOGOA model is also applied in FS and the selection of optimalDELM parameters to improve the predictive outcome.To inspect the effectual outcome of the proposed MOGOA-DELM model,a series of simulations was performed using UK Smart Meter dataset.In the experimentation procedure,the proposed model achieved the highest accuracy of 85.80%and the results established the superiority of the proposed model in predicting the testing data. 展开更多
关键词 Peer to Peer energy trade smart grid load forecasting machine learning feature selection
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部