The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespre...The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.展开更多
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use...As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.展开更多
This article presents a comprehensive framework for advancing sustainable transportation through the integration of next-generation energy technologies.It explores the convergence of Vernova green energy,nuclear fissi...This article presents a comprehensive framework for advancing sustainable transportation through the integration of next-generation energy technologies.It explores the convergence of Vernova green energy,nuclear fission from ARCs(advanced reactor concepts)and SMRs(small modular reactors),and future-focused nuclear fusion methods-MCF(magnetic confinement fusion)and ICF(inertial confinement fusion).Central to this integration is the use of AI(artificial intelligence)to enhance smart grid efficiency,enable real-time optimization,and ensure resilient energy delivery.The synergy between these zero-carbon energy sources and AI-driven infrastructure promises a transformative impact on electric mobility,hydrogen-powered systems,and autonomous transport.By detailing the architecture of an AI-augmented,carbon-neutral transport ecosystem,this paper contributes to the roadmap for future global mobility.展开更多
By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help s...By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help smart grid end-users decrease power payment and usage unhappiness,this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection.An enhanced state-based Markov decision process(MDP)without transition probabilities simulates the decision issue.A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue.Several adjustments to the sampling and data representation are made to increase the computational and prediction performance.Using a continuous high-dimensional state space,the suggested approach can uncover the underlying characteristics of time-varying pricing schemes.Without knowing anything regarding the market environment in advance,the best decision-making policy may be learned via case studies that use data from actual historical price plans.Experiments show that the suggested decision approach may reduce cost and energy usage dissatisfaction by using user data to build an accurate prediction strategy.In this research,we look at how smart city energy planners rely on precise load forecasts.It presents a hybrid method that extracts associated characteristics to improve accuracy in residential power consumption forecasts using machine learning(ML).It is possible to measure the precision of forecasts with the use of loss functions with the RMSE.This research presents a methodology for estimating smart home energy usage in response to the growing interest in explainable artificial intelligence(XAI).Using Shapley Additive explanations(SHAP)approaches,this strategy makes it easy for consumers to comprehend their energy use trends.To predict future energy use,the study employs gradient boosting in conjunction with long short-term memory neural networks.展开更多
The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serv...The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serves as an effective emergency solution.This study addresses the challenge of optimizing the energy efficiency of data transmission fromSPSs to low Earth orbit(LEO)satellites through unmanned aerial vehicles(UAVs),considering both effective capacity and fronthaul link capacity constraints.Due to the non-convex nature of the problem,the objective function is reformulated,and a delay-aware energy-efficient power allocation and UAV trajectory design(DEPATD)algorithm is proposed as a two-loop approach.Since the inner loop remains non-convex,the block coordinate descent(BCD)method is employed to decompose it into three subproblems:power allocation for SPSs,power allocation for UAVs,and UAV trajectory design.The first two subproblems are solved using the Lagrangian dual method,while the third is addressed with the successive convex approximation(SCA)technique.By iteratively solving these subproblems,an efficient algorithm is developed to resolve the inner loop issue.Simulation results demonstrate that the energy efficiency of the proposed DEPATD algorithm improves by 4.02% compared to the benchmark algorithm when the maximum transmission power of the SPSs increases from 0.1 to 0.45W.展开更多
Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity...Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.展开更多
This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects su...This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring,data expansion,control association,throughput,and losses.In addition,all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks.Moreover,the quantitative analysis of the optimization algorithm is discussed concerning two case studies,thereby achieving early convergence at reduced complexities.The suggested method ensures that each communication unit has its own distinct channels,maximizing the possibility of accurate measurements.This results in the provision of only the original data values,hence enhancing security.Both power and line values are individually observed to establish control in smart grid-connected channels,even in the presence of adaptive settings.A comparison analysis is conducted to showcase the results,using simulation studies involving four scenarios and two case studies.The proposed method exhibits reduced complexity,resulting in a throughput gain of over 90%.展开更多
Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it mus...Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments.展开更多
The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model tr...The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model training and widespread real-time inference necessitates substantial electricity consumption,presenting a significant challenge to conventional power infrastructure.This paper examines the critical need for a fundamental shift towards smart energy grids in response to AI’s growing energy footprint.It delves into the symbiotic relationship wherein AI acts as a significant energy consumer while offering the intelligence required for dynamic load management,efficient integration of renewable energy sources,and optimized grid operations.We posit that advanced smart grids are indispensable for facilitating AI’s sustainable growth,underscoring this synergy as a pivotal advancement toward a resilient energy future.展开更多
To transmit customer power data collected by smart meters(SMs)to utility companies,data must first be transmitted to the corresponding data aggregation point(DAP)of the SM.The number of DAPs installed and the installa...To transmit customer power data collected by smart meters(SMs)to utility companies,data must first be transmitted to the corresponding data aggregation point(DAP)of the SM.The number of DAPs installed and the installation location greatly impact the whole network.For the traditional DAP placement algorithm,the number of DAPs must be set in advance,but determining the best number of DAPs is difficult,which undoubtedly reduces the overall performance of the network.Moreover,the excessive gap between the loads of different DAPs is also an important factor affecting the quality of the network.To address the above problems,this paper proposes a DAP placement algorithm,APSSA,based on the improved affinity propagation(AP)algorithm and sparrow search(SSA)algorithm,which can select the appropriate number of DAPs to be installed and the corresponding installation locations according to the number of SMs and their distribution locations in different environments.The algorithm adds an allocation mechanism to optimize the subnetwork in the SSA.APSSA is evaluated under three different areas and compared with other DAP placement algorithms.The experimental results validated that the method in this paper can reduce the network cost,shorten the average transmission distance,and reduce the load gap.展开更多
The load profile is a key characteristic of the power grid and lies at the basis for the power flow control and generation scheduling.However,due to the wide adoption of internet-of-things(IoT)-based metering infrastr...The load profile is a key characteristic of the power grid and lies at the basis for the power flow control and generation scheduling.However,due to the wide adoption of internet-of-things(IoT)-based metering infrastructure,the cyber vulnerability of load meters has attracted the adversary’s great attention.In this paper,we investigate the vulnerability of manipulating the nodal prices by injecting false load data into the meter measurements.By taking advantage of the changing properties of real-world load profile,we propose a deeply hidden load data attack(i.e.,DH-LDA)that can evade bad data detection,clustering-based detection,and price anomaly detection.The main contributions of this work are as follows:(i)We design a stealthy attack framework that exploits historical load patterns to generate load data with minimal statistical deviation from normalmeasurements,thereby maximizing concealment;(ii)We identify the optimal time window for data injection to ensure that the altered nodal prices follow natural fluctuations,enhancing the undetectability of the attack in real-time market operations;(iii)We develop a resilience evaluation metric and formulate an optimization-based approach to quantify the electricity market’s robustness against DH-LDAs.Our experiments show that the adversary can gain profits from the electricity market while remaining undetected.展开更多
Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the hig...Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.展开更多
Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightene...Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.展开更多
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u...False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.展开更多
With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and int...With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.展开更多
In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open...In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.展开更多
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS sy...By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS system is divided into two parts, the gateway installation cost and the data transmission cost. Secondly, through comparing two kinds of different queuing theories, the cost problem of the HEMS is converted into the problem of gateway deployment. Finally, a machine-to-machine( M2M) gateway configuration scheme is designed to minimize the cost of the system. Simulation results showthat the cost of the HEMS system mainly comes from the installation cost of the gateways when the gateway buffer space is large enough. If the gateway buffer space is limited, the proposed queue algorithm can effectively achieve optimal gateway setting while maintaining the minimal cost of the HEMS at desired levels through marginal analyses and the properties of cost minimization.展开更多
Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which p...Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which presents opportunities to improve the cost-effectiveness of power supply and minimize environmental impacts.A systematic evaluation of the comprehensive benefits brought by smart grid to smart cities can provide necessary theoretical fundamentals for urban planning and construction towards a sustainable energy future.However,most of the present methods of assessing smart cities do not fully take into account the benefits expected from the smart grid.To comprehensively evaluate the development levels of smart cities while revealing the supporting roles of smart grids,this article proposes a model of smart city development needs from the perspective of residents’needs based on Maslow’s Hierarchy of Needs theory,which serves the primary purpose of building a smart city.By classifying and reintegrating the needs,an evaluation index system of smart grids supporting smart cities was further constructed.A case analysis concluded that smart grids,as an essential foundation and objective requirement for smart cities,are important in promoting scientific urban management,intelligent infrastructure,refined public services,efficient energy utilization,and industrial development and modernization.Further optimization suggestions were given to the city analyzed in the case include strengthening urban management and infrastructure constructions,such as electric vehicle charging facilities and wireless coverage.展开更多
文摘The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
基金supported by the National Key R&D Program of China(No.2023YFB2703700)the National Natural Science Foundation of China(Nos.U21A20465,62302457,62402444,62172292)+4 种基金the Fundamental Research Funds of Zhejiang Sci-Tech University(Nos.23222092-Y,22222266-Y)the Program for Leading Innovative Research Team of Zhejiang Province(No.2023R01001)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ24F020008,LQ24F020012)the Foundation of State Key Laboratory of Public Big Data(No.[2022]417)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C01119).
文摘As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
文摘This article presents a comprehensive framework for advancing sustainable transportation through the integration of next-generation energy technologies.It explores the convergence of Vernova green energy,nuclear fission from ARCs(advanced reactor concepts)and SMRs(small modular reactors),and future-focused nuclear fusion methods-MCF(magnetic confinement fusion)and ICF(inertial confinement fusion).Central to this integration is the use of AI(artificial intelligence)to enhance smart grid efficiency,enable real-time optimization,and ensure resilient energy delivery.The synergy between these zero-carbon energy sources and AI-driven infrastructure promises a transformative impact on electric mobility,hydrogen-powered systems,and autonomous transport.By detailing the architecture of an AI-augmented,carbon-neutral transport ecosystem,this paper contributes to the roadmap for future global mobility.
文摘By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help smart grid end-users decrease power payment and usage unhappiness,this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection.An enhanced state-based Markov decision process(MDP)without transition probabilities simulates the decision issue.A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue.Several adjustments to the sampling and data representation are made to increase the computational and prediction performance.Using a continuous high-dimensional state space,the suggested approach can uncover the underlying characteristics of time-varying pricing schemes.Without knowing anything regarding the market environment in advance,the best decision-making policy may be learned via case studies that use data from actual historical price plans.Experiments show that the suggested decision approach may reduce cost and energy usage dissatisfaction by using user data to build an accurate prediction strategy.In this research,we look at how smart city energy planners rely on precise load forecasts.It presents a hybrid method that extracts associated characteristics to improve accuracy in residential power consumption forecasts using machine learning(ML).It is possible to measure the precision of forecasts with the use of loss functions with the RMSE.This research presents a methodology for estimating smart home energy usage in response to the growing interest in explainable artificial intelligence(XAI).Using Shapley Additive explanations(SHAP)approaches,this strategy makes it easy for consumers to comprehend their energy use trends.To predict future energy use,the study employs gradient boosting in conjunction with long short-term memory neural networks.
基金Supported by the Self-funded Research Project of Beijing FibrLink Communications Co.Ltd.“Research on Key Technologies forUnifiedManagement of Air-to-Earth Integrated CommunicationNetworks(546826230034).”。
文摘The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serves as an effective emergency solution.This study addresses the challenge of optimizing the energy efficiency of data transmission fromSPSs to low Earth orbit(LEO)satellites through unmanned aerial vehicles(UAVs),considering both effective capacity and fronthaul link capacity constraints.Due to the non-convex nature of the problem,the objective function is reformulated,and a delay-aware energy-efficient power allocation and UAV trajectory design(DEPATD)algorithm is proposed as a two-loop approach.Since the inner loop remains non-convex,the block coordinate descent(BCD)method is employed to decompose it into three subproblems:power allocation for SPSs,power allocation for UAVs,and UAV trajectory design.The first two subproblems are solved using the Lagrangian dual method,while the third is addressed with the successive convex approximation(SCA)technique.By iteratively solving these subproblems,an efficient algorithm is developed to resolve the inner loop issue.Simulation results demonstrate that the energy efficiency of the proposed DEPATD algorithm improves by 4.02% compared to the benchmark algorithm when the maximum transmission power of the SPSs increases from 0.1 to 0.45W.
文摘Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.
基金supported by the Researchers Supporting Project number RSP2025R244,King Saud University,Riyadh,Saudi Arabia.
文摘This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring,data expansion,control association,throughput,and losses.In addition,all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks.Moreover,the quantitative analysis of the optimization algorithm is discussed concerning two case studies,thereby achieving early convergence at reduced complexities.The suggested method ensures that each communication unit has its own distinct channels,maximizing the possibility of accurate measurements.This results in the provision of only the original data values,hence enhancing security.Both power and line values are individually observed to establish control in smart grid-connected channels,even in the presence of adaptive settings.A comparison analysis is conducted to showcase the results,using simulation studies involving four scenarios and two case studies.The proposed method exhibits reduced complexity,resulting in a throughput gain of over 90%.
基金supported by the National Natural Science Foundation of China(Grant No.62103349)the Henan Province Science and Technology Research Project(Grant No.232102210104).
文摘Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments.
文摘The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model training and widespread real-time inference necessitates substantial electricity consumption,presenting a significant challenge to conventional power infrastructure.This paper examines the critical need for a fundamental shift towards smart energy grids in response to AI’s growing energy footprint.It delves into the symbiotic relationship wherein AI acts as a significant energy consumer while offering the intelligence required for dynamic load management,efficient integration of renewable energy sources,and optimized grid operations.We posit that advanced smart grids are indispensable for facilitating AI’s sustainable growth,underscoring this synergy as a pivotal advancement toward a resilient energy future.
基金supported by the Fujian University of Technology under Grant GYZ20016,GY-Z18183,and GY-Z19005partially supported by the National Science and Technology Council under Grant NSTC 113-2221-E-224-056-.
文摘To transmit customer power data collected by smart meters(SMs)to utility companies,data must first be transmitted to the corresponding data aggregation point(DAP)of the SM.The number of DAPs installed and the installation location greatly impact the whole network.For the traditional DAP placement algorithm,the number of DAPs must be set in advance,but determining the best number of DAPs is difficult,which undoubtedly reduces the overall performance of the network.Moreover,the excessive gap between the loads of different DAPs is also an important factor affecting the quality of the network.To address the above problems,this paper proposes a DAP placement algorithm,APSSA,based on the improved affinity propagation(AP)algorithm and sparrow search(SSA)algorithm,which can select the appropriate number of DAPs to be installed and the corresponding installation locations according to the number of SMs and their distribution locations in different environments.The algorithm adds an allocation mechanism to optimize the subnetwork in the SSA.APSSA is evaluated under three different areas and compared with other DAP placement algorithms.The experimental results validated that the method in this paper can reduce the network cost,shorten the average transmission distance,and reduce the load gap.
基金supported by the project Major Scientific and Technological Special Project of Guizhou Province([2024]014).
文摘The load profile is a key characteristic of the power grid and lies at the basis for the power flow control and generation scheduling.However,due to the wide adoption of internet-of-things(IoT)-based metering infrastructure,the cyber vulnerability of load meters has attracted the adversary’s great attention.In this paper,we investigate the vulnerability of manipulating the nodal prices by injecting false load data into the meter measurements.By taking advantage of the changing properties of real-world load profile,we propose a deeply hidden load data attack(i.e.,DH-LDA)that can evade bad data detection,clustering-based detection,and price anomaly detection.The main contributions of this work are as follows:(i)We design a stealthy attack framework that exploits historical load patterns to generate load data with minimal statistical deviation from normalmeasurements,thereby maximizing concealment;(ii)We identify the optimal time window for data injection to ensure that the altered nodal prices follow natural fluctuations,enhancing the undetectability of the attack in real-time market operations;(iii)We develop a resilience evaluation metric and formulate an optimization-based approach to quantify the electricity market’s robustness against DH-LDAs.Our experiments show that the adversary can gain profits from the electricity market while remaining undetected.
基金a grant from the Center of Excellence in Information Assurance(CoEIA),KSU.
文摘Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users.It hinders the economic growth of utility companies,poses electrical risks,and impacts the high energy costs borne by consumers.The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data,including information on client consumption,which may be used to identify electricity theft using machine learning and deep learning techniques.Moreover,there also exist different solutions such as hardware-based solutions to detect electricity theft that may require human resources and expensive hardware.Computer-based solutions are presented in the literature to identify electricity theft but due to the dimensionality curse,class imbalance issue and improper hyper-parameter tuning of such models lead to poor performance.In this research,a hybrid deep learning model abbreviated as RoGRUT is proposed to detect electricity theft as amalicious and non-malicious activity.The key steps of the RoGRUT are data preprocessing that covers the problem of class imbalance,feature extraction and final theft detection.Different advanced-level models like RoBERTa is used to address the curse of dimensionality issue,the near miss for class imbalance,and transfer learning for classification.The effectiveness of the RoGRUTis evaluated using the dataset fromactual smartmeters.A significant number of simulations demonstrate that,when compared to its competitors,the RoGRUT achieves the best classification results.The performance evaluation of the proposed model revealed exemplary results across variousmetrics.The accuracy achieved was 88%,with precision at an impressive 86%and recall reaching 84%.The F1-Score,a measure of overall performance,stood at 85%.Furthermore,themodel exhibited a noteworthyMatthew correlation coefficient of 78%and excelled with an area under the curve of 91%.
基金The financial support from the Program for Science and Technology of Henan Province of China(Grant No.242102210148)Henan Center for Outstanding Overseas Scientists(Grant No.GZS2022011)Songshan Laboratory Pre-Research Project(Grant No.YYJC032022022).
文摘Intelligent electronic devices(IEDs)are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions.In the context of the heightened security challenges within smart grids,IEDs pose significant risks due to inherent hardware and software vulner-abilities,as well as the openness and vulnerability of communication protocols.Smart grid security,distinct from traditional internet security,mainly relies on monitoring network security events at the platform layer,lacking an effective assessment mechanism for IEDs.Hence,we incorporate considerations for both cyber-attacks and physical faults,presenting security assessment indicators and methods specifically tailored for IEDs.Initially,we outline the security monitoring technology for IEDs,considering the necessary data sources for their security assessment.Subsequently,we classify IEDs and establish a comprehensive security monitoring index system,incorporating factors such as running states,network traffic,and abnormal behaviors.This index system contains 18 indicators in 3 categories.Additionally,we elucidate quantitative methods for various indicators and propose a hybrid security assessment method known as GRCW-hybrid,combining grey relational analysis(GRA),analytic hierarchy process(AHP),and entropy weight method(EWM).According to the proposed assessment method,the security risk level of IEDs can be graded into 6 levels,namely 0,1,2,3,4,and 5.The higher the level,the greater the security risk.Finally,we assess and simulate 15 scenarios in 3 categories,which are based on monitoring indicators and real-world situations encountered by IEDs.The results show that calculated security risk level based on the proposed assessment method are consistent with actual simulation.Thus,the reasonableness and effectiveness of the proposed index system and assessment method are validated.
基金supported in part by the Research Fund of Guangxi Key Lab of Multi-Source Information Mining&Security(MIMS21-M-02).
文摘False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness.
基金This work was supported by Natural Science Foundation of China(Nos.62303126,62362008,62066006,authors Zhenyong Zhang and Bin Hu,https://www.nsfc.gov.cn/,accessed on 25 July 2024)Guizhou Provincial Science and Technology Projects(No.ZK[2022]149,author Zhenyong Zhang,https://kjt.guizhou.gov.cn/,accessed on 25 July 2024)+1 种基金Guizhou Provincial Research Project(Youth)forUniversities(No.[2022]104,author Zhenyong Zhang,https://jyt.guizhou.gov.cn/,accessed on 25 July 2024)GZU Cultivation Project of NSFC(No.[2020]80,author Zhenyong Zhang,https://www.gzu.edu.cn/,accessed on 25 July 2024).
文摘With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.
文摘In the evolving landscape of the smart grid(SG),the integration of non-organic multiple access(NOMA)technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management.However,the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages,especially when broadcasted from a neighborhood gateway(NG)to smart meters(SMs).This paper introduces a novel approach based on reinforcement learning(RL)to fortify the performance of secrecy.Motivated by the need for efficient and effective training of the fully connected layers in the RL network,we employ an improved chimp optimization algorithm(IChOA)to update the parameters of the RL.By integrating the IChOA into the training process,the RL agent is expected to learn more robust policies faster and with better convergence properties compared to standard optimization algorithms.This can lead to improved performance in complex SG environments,where the agent must make decisions that enhance the security and efficiency of the network.We compared the performance of our proposed method(IChOA-RL)with several state-of-the-art machine learning(ML)algorithms,including recurrent neural network(RNN),long short-term memory(LSTM),K-nearest neighbors(KNN),support vector machine(SVM),improved crow search algorithm(I-CSA),and grey wolf optimizer(GWO).Extensive simulations demonstrate the efficacy of our approach compared to the related works,showcasing significant improvements in secrecy capacity rates under various network conditions.The proposed IChOA-RL exhibits superior performance compared to other algorithms in various aspects,including the scalability of the NOMA communication system,accuracy,coefficient of determination(R2),root mean square error(RMSE),and convergence trend.For our dataset,the IChOA-RL architecture achieved coefficient of determination of 95.77%and accuracy of 97.41%in validation dataset.This was accompanied by the lowest RMSE(0.95),indicating very precise predictions with minimal error.
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
基金The National Natural Science Foundation of China(No.61471031)the Fundamental Research Funds for the Central Universities(No.2013JBZ01)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0766)
文摘By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS system is divided into two parts, the gateway installation cost and the data transmission cost. Secondly, through comparing two kinds of different queuing theories, the cost problem of the HEMS is converted into the problem of gateway deployment. Finally, a machine-to-machine( M2M) gateway configuration scheme is designed to minimize the cost of the system. Simulation results showthat the cost of the HEMS system mainly comes from the installation cost of the gateways when the gateway buffer space is large enough. If the gateway buffer space is limited, the proposed queue algorithm can effectively achieve optimal gateway setting while maintaining the minimal cost of the HEMS at desired levels through marginal analyses and the properties of cost minimization.
文摘Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which presents opportunities to improve the cost-effectiveness of power supply and minimize environmental impacts.A systematic evaluation of the comprehensive benefits brought by smart grid to smart cities can provide necessary theoretical fundamentals for urban planning and construction towards a sustainable energy future.However,most of the present methods of assessing smart cities do not fully take into account the benefits expected from the smart grid.To comprehensively evaluate the development levels of smart cities while revealing the supporting roles of smart grids,this article proposes a model of smart city development needs from the perspective of residents’needs based on Maslow’s Hierarchy of Needs theory,which serves the primary purpose of building a smart city.By classifying and reintegrating the needs,an evaluation index system of smart grids supporting smart cities was further constructed.A case analysis concluded that smart grids,as an essential foundation and objective requirement for smart cities,are important in promoting scientific urban management,intelligent infrastructure,refined public services,efficient energy utilization,and industrial development and modernization.Further optimization suggestions were given to the city analyzed in the case include strengthening urban management and infrastructure constructions,such as electric vehicle charging facilities and wireless coverage.