期刊文献+
共找到6,606篇文章
< 1 2 250 >
每页显示 20 50 100
Market Drivers in India’s Smart Grid:Responsibilities and Roles of Stakeholders
1
作者 Abhay Sanatan Satapathy Suresh Kumar Sahoo +3 位作者 Asit Mohanty Yasser Fouad Manzoore Elahi Mohammad Soudagar Erdem Cuce 《Energy Engineering》 EI 2025年第1期101-128,共28页
The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespre... The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future. 展开更多
关键词 smart grid STAKEHOLDERS smart grid technology market drivers
在线阅读 下载PDF
Smart Grid Innovations: Increasing Resilience, Security, and Sustainability in the Era of Energy Transition 被引量:1
2
作者 Yixin Yu Yanli Liu Didi Yu 《Engineering》 2025年第8期1-2,共2页
The accelerating global energy transition,driven by climate imperatives and technological advancements,demands fundamen-tal transformations in power systems.Smart grids,characterized by cyber-physical integration,dist... The accelerating global energy transition,driven by climate imperatives and technological advancements,demands fundamen-tal transformations in power systems.Smart grids,characterized by cyber-physical integration,distributed renewable resources,and data-driven intelligence,have emerged as the backbone of this evolution.This convergence,however,introduces unprecedented complexities in resilience,security,stability,and market operation.This special issue presents five pivotal studies addressing these interconnected challenges,offering novel methodologies and insights to advance the efficiency,resilience,and sustainability of modern power systems. 展开更多
关键词 SECURITY SUSTAINABILITY global energy transitiondriven smart grids RESILIENCE distributed renewable resources renewable resourcesand cyber physical integration
在线阅读 下载PDF
Stability Prediction in Smart Grid Using PSO Optimized XGBoost Algorithm with Dynamic Inertia Weight Updation
3
作者 Adel Binbusayyis Mohemmed Sha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期909-931,共23页
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ... Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system. 展开更多
关键词 smart grid machine learning particle swarm optimization XGBoost dynamic inertia weight update
在线阅读 下载PDF
AI-Enhanced Secure Data Aggregation for Smart Grids with Privacy Preservation
4
作者 Congcong Wang Chen Wang +1 位作者 Wenying Zheng Wei Gu 《Computers, Materials & Continua》 SCIE EI 2025年第1期799-816,共18页
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use... As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis. 展开更多
关键词 smart grid data security privacy protection artificial intelligence data aggregation
在线阅读 下载PDF
Next-Gen Synergies Integrating AI-Driven Smart Grids,Fusion and Fission Nuclear Systems,and Green Energy for Zero-Carbon Sustainable Transportation:Advanced Technologies for Energy-Saving Sustainable Transportation Engineering
5
作者 Bahman Zohuri 《Journal of Energy and Power Engineering》 2025年第3期115-125,共11页
This article presents a comprehensive framework for advancing sustainable transportation through the integration of next-generation energy technologies.It explores the convergence of Vernova green energy,nuclear fissi... This article presents a comprehensive framework for advancing sustainable transportation through the integration of next-generation energy technologies.It explores the convergence of Vernova green energy,nuclear fission from ARCs(advanced reactor concepts)and SMRs(small modular reactors),and future-focused nuclear fusion methods-MCF(magnetic confinement fusion)and ICF(inertial confinement fusion).Central to this integration is the use of AI(artificial intelligence)to enhance smart grid efficiency,enable real-time optimization,and ensure resilient energy delivery.The synergy between these zero-carbon energy sources and AI-driven infrastructure promises a transformative impact on electric mobility,hydrogen-powered systems,and autonomous transport.By detailing the architecture of an AI-augmented,carbon-neutral transport ecosystem,this paper contributes to the roadmap for future global mobility. 展开更多
关键词 Sustainable transportation zero-carbon energy Vernova green energy ARCS SMRs MCF ICF AI smart grids energy-efficient mobility
在线阅读 下载PDF
AI-Powered Digital Twin Frameworks for Smart Grid Optimization and Real-Time Energy Management in Smart Buildings:A Survey
6
作者 Saeed Asadi Hajar Kazemi Naeini +4 位作者 Delaram Hassanlou Abolhassan Pishahang Saeid Aghasoleymani Najafabadi Abbas Sharifi Mohsen Ahmadi 《Computer Modeling in Engineering & Sciences》 2025年第11期1259-1301,共43页
The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solution... The growing energy demand of buildings, driven by rapid urbanization, poses significant challenges for sustainable urban development. As buildings account for over 40% of global energy consumption, innovative solutions are needed to improve efficiency, resilience, and environmental performance. This paper reviews the integration of Digital Twin (DT) technologies and Machine Learning (ML) for optimizing energy management in smart buildings connected to smart grids. A key enabler of this integration is the Internet of Things (IoT), which provides the sensor networks and real-time data streams that fee/d DT–ML frameworks, enabling accurate monitoring, forecasting, and adaptive control. Through this synergy, DT–ML systems enhance energy prediction, occupant comfort, and automated fault detection, while also supporting broader sustainability goals. The review examines recent advances in DT–ML energy systems, with attention to enabling technologies such as IoT sensor networks, building energy management systems, edge–cloud computing, and advanced analytics. Key challenges including data interoperability, cybersecurity, scalability, and the need for standardized frameworks are critically discussed, along with emerging solutions such as federated learning and blockchain. Special focus is given to human-centric digital twin frameworks that integrate user comfort and behavioral adaptation into energy optimization strategies. The findings suggest that DT–ML integration, enabled by IoT sensor networks, has the potential to significantly reduce energy consumption, lower operational costs, and improve resilience in urban infrastructures. The paper concludes by outlining future research priorities, including decentralized learning models, universal data standards, enhanced privacy protocols, and expanding digital twin applications for distributed renewable energy resources. 展开更多
关键词 Digital twin machine learning smart grid smart buildings energy optimization IOT real-time monitoring SUSTAINABILITY
在线阅读 下载PDF
Design and Test Verification of Energy Consumption Perception AI Algorithm for Terminal Access to Smart Grid
7
作者 Sheng Bi Jiayan Wang +2 位作者 Dong Su Hui Lu Yu Zhang 《Energy Engineering》 2025年第10期4135-4151,共17页
By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help s... By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help smart grid end-users decrease power payment and usage unhappiness,this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection.An enhanced state-based Markov decision process(MDP)without transition probabilities simulates the decision issue.A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue.Several adjustments to the sampling and data representation are made to increase the computational and prediction performance.Using a continuous high-dimensional state space,the suggested approach can uncover the underlying characteristics of time-varying pricing schemes.Without knowing anything regarding the market environment in advance,the best decision-making policy may be learned via case studies that use data from actual historical price plans.Experiments show that the suggested decision approach may reduce cost and energy usage dissatisfaction by using user data to build an accurate prediction strategy.In this research,we look at how smart city energy planners rely on precise load forecasts.It presents a hybrid method that extracts associated characteristics to improve accuracy in residential power consumption forecasts using machine learning(ML).It is possible to measure the precision of forecasts with the use of loss functions with the RMSE.This research presents a methodology for estimating smart home energy usage in response to the growing interest in explainable artificial intelligence(XAI).Using Shapley Additive explanations(SHAP)approaches,this strategy makes it easy for consumers to comprehend their energy use trends.To predict future energy use,the study employs gradient boosting in conjunction with long short-term memory neural networks. 展开更多
关键词 Energy consumption perception terminal access smart grid AI Model SHAP Q-learning algorithm
在线阅读 下载PDF
Two-Hop Delay-Aware Energy Efficiency Resource Allocation in Space-Air-Ground Integrated Smart Grid Network
8
作者 Qinghai Ou Min Yang +1 位作者 Jingcai Kong Yang Yang 《Computers, Materials & Continua》 2025年第5期2429-2447,共19页
The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serv... The lack of communication infrastructure in remote regions presents significant obstacles to gathering data from smart power sensors(SPSs)in smart grid networks.In such cases,a space-air-ground integrated network serves as an effective emergency solution.This study addresses the challenge of optimizing the energy efficiency of data transmission fromSPSs to low Earth orbit(LEO)satellites through unmanned aerial vehicles(UAVs),considering both effective capacity and fronthaul link capacity constraints.Due to the non-convex nature of the problem,the objective function is reformulated,and a delay-aware energy-efficient power allocation and UAV trajectory design(DEPATD)algorithm is proposed as a two-loop approach.Since the inner loop remains non-convex,the block coordinate descent(BCD)method is employed to decompose it into three subproblems:power allocation for SPSs,power allocation for UAVs,and UAV trajectory design.The first two subproblems are solved using the Lagrangian dual method,while the third is addressed with the successive convex approximation(SCA)technique.By iteratively solving these subproblems,an efficient algorithm is developed to resolve the inner loop issue.Simulation results demonstrate that the energy efficiency of the proposed DEPATD algorithm improves by 4.02% compared to the benchmark algorithm when the maximum transmission power of the SPSs increases from 0.1 to 0.45W. 展开更多
关键词 Energy efficiency effective capacity delay requirement power allocation smart grid space-air-ground integrated network
在线阅读 下载PDF
Demand side management with wireless channel impact in IoT-enabled smart grid system
9
作者 Md.Farhad Hossain Kumudu S.Munasinghe +4 位作者 Nishant Jagannath Khandakar Tanvir Ahmed Md.Nabid Hasan Ibrahim Elgendi Abbas Jamalipour 《Digital Communications and Networks》 2025年第2期493-504,共12页
Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity... Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare. 展开更多
关键词 smart grid Real time pricing Demand side management Wireless communications ZIGBEE
在线阅读 下载PDF
Smart Grid Security Framework for Data Transmissions with Adaptive Practices Using Machine Learning Algorithm
10
作者 Shitharth Selvarajan Hariprasath Manoharan +2 位作者 Taher Al-Shehari Hussain Alsalman Taha Alfakih 《Computers, Materials & Continua》 2025年第3期4339-4369,共31页
This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects su... This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring,data expansion,control association,throughput,and losses.In addition,all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks.Moreover,the quantitative analysis of the optimization algorithm is discussed concerning two case studies,thereby achieving early convergence at reduced complexities.The suggested method ensures that each communication unit has its own distinct channels,maximizing the possibility of accurate measurements.This results in the provision of only the original data values,hence enhancing security.Both power and line values are individually observed to establish control in smart grid-connected channels,even in the presence of adaptive settings.A comparison analysis is conducted to showcase the results,using simulation studies involving four scenarios and two case studies.The proposed method exhibits reduced complexity,resulting in a throughput gain of over 90%. 展开更多
关键词 Machine learning power systems SECURITY smart grid
在线阅读 下载PDF
Improved PPO-Based Task Offloading Strategies for Smart Grids
11
作者 Qian Wang Ya Zhou 《Computers, Materials & Continua》 2025年第8期3835-3856,共22页
Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it mus... Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments. 展开更多
关键词 smart grid task offloading deep reinforcement learning improved PPO algorithm edge computing
在线阅读 下载PDF
Graph Based Two-Phase Procedure for Phasor Data Concentrator Planning in Wide Area Measurement System of Smart Grid
12
作者 Ma Hailong Duan Tong +2 位作者 Yi Peng Jiang Yiming Zhang Jin 《China Communications》 2025年第11期291-304,共14页
The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear program... The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear programming(ILP)based modeling and solution schemes that ignore the graph-related features of WAMS,in this work,the PDCP problem is solved through a heuristic graphbased two-phase procedure(TPP):topology partitioning,and phasor data concentrator(PDC)provisioning.Based on the existing minimum k-section algorithms in graph theory,the k-base topology partitioning algorithm is proposed.To improve the performance,the“center-node-last”pre-partitioning algorithm is proposed to give an initial partition before the k-base partitioning algorithm is applied.Then,the PDC provisioning algorithm is proposed to locate PDCs into the decomposed sub-graphs.The proposed TPP was evaluated on five different IEEE benchmark test power systems and the achieved overall communication performance compared to the ILP based schemes show the validity and efficiency of the proposed method. 展开更多
关键词 industrial Internet minimum k-section phasor data concentrator placement phasor measurement unit smart grid topology partitioning wide area measurement system
在线阅读 下载PDF
Powering Artificial Intelligence:How Artificial Intelligence’s Massive Energy Demands Are Reshaping the Future of Smart Grid
13
作者 Bahman Zohuri Farhang Mossavar-Rahmani Mehdi Abedi-Varaki 《Journal of Energy and Power Engineering》 2025年第3期91-99,共9页
The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model tr... The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model training and widespread real-time inference necessitates substantial electricity consumption,presenting a significant challenge to conventional power infrastructure.This paper examines the critical need for a fundamental shift towards smart energy grids in response to AI’s growing energy footprint.It delves into the symbiotic relationship wherein AI acts as a significant energy consumer while offering the intelligence required for dynamic load management,efficient integration of renewable energy sources,and optimized grid operations.We posit that advanced smart grids are indispensable for facilitating AI’s sustainable growth,underscoring this synergy as a pivotal advancement toward a resilient energy future. 展开更多
关键词 AI smart grid energy demand data centers load balancing renewable integration grid modernization deep learning power consumption real-time monitoring AI in energy systems
在线阅读 下载PDF
Data Aggregation Point Placement and Subnetwork Optimization for Smart Grids
14
作者 Tien-Wen Sung Wei Li +2 位作者 Chao-Yang Lee Yuzhen Chen Qingjun Fang 《Computers, Materials & Continua》 2025年第4期407-434,共28页
To transmit customer power data collected by smart meters(SMs)to utility companies,data must first be transmitted to the corresponding data aggregation point(DAP)of the SM.The number of DAPs installed and the installa... To transmit customer power data collected by smart meters(SMs)to utility companies,data must first be transmitted to the corresponding data aggregation point(DAP)of the SM.The number of DAPs installed and the installation location greatly impact the whole network.For the traditional DAP placement algorithm,the number of DAPs must be set in advance,but determining the best number of DAPs is difficult,which undoubtedly reduces the overall performance of the network.Moreover,the excessive gap between the loads of different DAPs is also an important factor affecting the quality of the network.To address the above problems,this paper proposes a DAP placement algorithm,APSSA,based on the improved affinity propagation(AP)algorithm and sparrow search(SSA)algorithm,which can select the appropriate number of DAPs to be installed and the corresponding installation locations according to the number of SMs and their distribution locations in different environments.The algorithm adds an allocation mechanism to optimize the subnetwork in the SSA.APSSA is evaluated under three different areas and compared with other DAP placement algorithms.The experimental results validated that the method in this paper can reduce the network cost,shorten the average transmission distance,and reduce the load gap. 展开更多
关键词 smart grid data aggregation point placement network cost average transmission distance load gap
在线阅读 下载PDF
DH-LDA:A Deeply Hidden Load Data Attack on Electricity Market of Smart Grid
15
作者 Yunhao Yu Meiling Dizha +6 位作者 Boda Zhang Ruibin Wen FuhuaLuo Xiang Guo Junjie Song Bingdong Wang Zhenyong Zhang 《Computers, Materials & Continua》 2025年第11期3861-3877,共17页
The load profile is a key characteristic of the power grid and lies at the basis for the power flow control and generation scheduling.However,due to the wide adoption of internet-of-things(IoT)-based metering infrastr... The load profile is a key characteristic of the power grid and lies at the basis for the power flow control and generation scheduling.However,due to the wide adoption of internet-of-things(IoT)-based metering infrastructure,the cyber vulnerability of load meters has attracted the adversary’s great attention.In this paper,we investigate the vulnerability of manipulating the nodal prices by injecting false load data into the meter measurements.By taking advantage of the changing properties of real-world load profile,we propose a deeply hidden load data attack(i.e.,DH-LDA)that can evade bad data detection,clustering-based detection,and price anomaly detection.The main contributions of this work are as follows:(i)We design a stealthy attack framework that exploits historical load patterns to generate load data with minimal statistical deviation from normalmeasurements,thereby maximizing concealment;(ii)We identify the optimal time window for data injection to ensure that the altered nodal prices follow natural fluctuations,enhancing the undetectability of the attack in real-time market operations;(iii)We develop a resilience evaluation metric and formulate an optimization-based approach to quantify the electricity market’s robustness against DH-LDAs.Our experiments show that the adversary can gain profits from the electricity market while remaining undetected. 展开更多
关键词 smart grid security load redistribution data electricity market deeply hidden attack
在线阅读 下载PDF
Optimal gateway deployment under different queuing mechanisms in smart grid 被引量:1
16
作者 赵军辉 姜婷婷 王海明 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期16-20,共5页
By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS sy... By optimizing the network topology, this paper proposes a newmethod of queuing theory clustering algorithm based on dynamic programming in a home energy management system( HEMS). First, the total cost of the HEMS system is divided into two parts, the gateway installation cost and the data transmission cost. Secondly, through comparing two kinds of different queuing theories, the cost problem of the HEMS is converted into the problem of gateway deployment. Finally, a machine-to-machine( M2M) gateway configuration scheme is designed to minimize the cost of the system. Simulation results showthat the cost of the HEMS system mainly comes from the installation cost of the gateways when the gateway buffer space is large enough. If the gateway buffer space is limited, the proposed queue algorithm can effectively achieve optimal gateway setting while maintaining the minimal cost of the HEMS at desired levels through marginal analyses and the properties of cost minimization. 展开更多
关键词 smart grid home energy management system(HEMS) queuing theory gateway deployment
在线阅读 下载PDF
An evaluation model for smart grids in support of smart cities based on the Hierarchy of Needs Theory
17
作者 Hongyu Lin Wei Wang +1 位作者 Yajun Zou Hongyi Chen 《Global Energy Interconnection》 EI CSCD 2023年第5期634-644,共11页
Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which p... Smart cities depend highly on an intelligent electrical networks to provide a reliable,safe,and clean power supplies.A smart grid achieves such aforementioned power supply by ensuring resilient energy delivery,which presents opportunities to improve the cost-effectiveness of power supply and minimize environmental impacts.A systematic evaluation of the comprehensive benefits brought by smart grid to smart cities can provide necessary theoretical fundamentals for urban planning and construction towards a sustainable energy future.However,most of the present methods of assessing smart cities do not fully take into account the benefits expected from the smart grid.To comprehensively evaluate the development levels of smart cities while revealing the supporting roles of smart grids,this article proposes a model of smart city development needs from the perspective of residents’needs based on Maslow’s Hierarchy of Needs theory,which serves the primary purpose of building a smart city.By classifying and reintegrating the needs,an evaluation index system of smart grids supporting smart cities was further constructed.A case analysis concluded that smart grids,as an essential foundation and objective requirement for smart cities,are important in promoting scientific urban management,intelligent infrastructure,refined public services,efficient energy utilization,and industrial development and modernization.Further optimization suggestions were given to the city analyzed in the case include strengthening urban management and infrastructure constructions,such as electric vehicle charging facilities and wireless coverage. 展开更多
关键词 smart city smart grid Evaluation index system Hierarchy of needs Benefits of smart grid
在线阅读 下载PDF
Smart Grid: Future of Electrical Transmission and Distribution
18
作者 Kamal Kant Sharma Himanshu Monga 《International Journal of Communications, Network and System Sciences》 2020年第4期45-54,共10页
For century, the need of change in the system of power grid is being felt and being considered as the most important change that we need in the modern era electrical system but before moving towards a new change the t... For century, the need of change in the system of power grid is being felt and being considered as the most important change that we need in the modern era electrical system but before moving towards a new change the things in past should be kept in mind so that there are better chances of great and beneficial change. The purpose of this research is to investigate the changes need to be incorporated in a conventional system to make a system self-sufficient and automated in order to make Electrical Power system more reliable. This paper assesses the current one way power system that is needed to be changed and has tried to provide an overview of the changes that we need in the system. The paper has focused more on the smart grid system and has explained the importance of smart grid system in terms of efficiency, automation and decision making capability in case of faults occurred on primitive grids with the help of comparative studies. The paper also highlighted the results in form of comparison with conventional grids and threw some light on the vision, control and the application of the smart grid system that will provide a two way system to the electrical network of the country and will make the distribution and consumption of energy more efficient also which is going to increase the reliability and accuracy in the system. 展开更多
关键词 smart grid Automatic grid System Vision of smart grid Communication Technologies
在线阅读 下载PDF
Smart Grids with Intelligent Periphery:An Architecture for the Energy Internet 被引量:24
19
作者 Felix F.Wu Pravin P.Varaiya Ron S.Y.Hui 《Engineering》 SCIE EI 2015年第4期436-446,共11页
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh... A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed. 展开更多
关键词 smart grid future grid Energy Internet energy- management system integrating renewables power system operation power system control distribution automation systems demand-side management
在线阅读 下载PDF
Double-Blockchain Assisted Secure and Anonymous Data Aggregation for Fog-Enabled Smart Grid 被引量:15
20
作者 Siguang Chen Li Yang +2 位作者 Chuanxin Zhao Vijayakumar Varadarajan Kun Wang 《Engineering》 SCIE EI 2022年第1期159-169,共11页
As a future energy system,the smart grid is designed to improve the efficiency of traditional power systems while providing more stable and reliable services.However,this efficient and reliable service relies on colle... As a future energy system,the smart grid is designed to improve the efficiency of traditional power systems while providing more stable and reliable services.However,this efficient and reliable service relies on collecting and analyzing users’electricity consumption data frequently,which induces various security and privacy threats.To address these challenges,we propose a double-blockchain assisted secure and anonymous data aggregation scheme for fog-enabled smart grid named DA-SADA.Specifically,we design a three-tier architecture-based data aggregation framework by integrating fog computing and the blockchain,which provides strong support for achieving efficient and secure data collection in smart grids.Subsequently,we develop a secure and anonymous data aggregation mechanism with low computational overhead by jointly leveraging the Paillier encryption,batch aggregation signature and anonymous authentication.In particular,the system achieves fine-grained data aggregation and provides effective support for power dispatching and price adjustment by the designed double-blockchain and two-level data aggregation.Finally,the superiority of the proposed scheme is illustrated by a series of security and computation cost analyses. 展开更多
关键词 Blockchain Fog computing Homomorphic encryption smart grid ANONYMITY
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部