Sludge biochar,a carbonized product of raw sludge,contains porous architectures that can act as epicenters for adsorbing external molecules through physical or chemical bonding.Sludge biochar also immobilizes innate m...Sludge biochar,a carbonized product of raw sludge,contains porous architectures that can act as epicenters for adsorbing external molecules through physical or chemical bonding.Sludge biochar also immobilizes innate micropollutants,which is advantageous over conventional sludge disposal methods.To date,numerous strategies have been discovered to improve sludge biochar morphology,but the influential factors,pore tuning mechanisms,and process feasibility remain imprecise.This knowledge gap limits our ability to design a robust sludge-based biochar.Herein,we present state-of-the-art sludge biochar synthesis methods with insight into structural and chemical transformation mechanisms.Roadblocks and novel concepts for improving sludge biochar porous architecture are highlighted.For the first time,sludge biochar properties,adsorption performances,and techno-economic perspectives were compared with commercial activated carbon(AC)to reveal the precise challenges in sludge biochar application.More importantly,sludge biochar role in carbon sequestration is detailed to demonstrate the environmental significance of this technology.Eventually,the review concludes with an overview of prospects and an outlook for developing sludge biochar-based research.展开更多
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the...Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.展开更多
This study aimed to explore the adsorption performance of sludge-based activated carbon(SBC)towards dissolved organic matters(DOMs)removal from sewage,and investigated the modification effect of different types of che...This study aimed to explore the adsorption performance of sludge-based activated carbon(SBC)towards dissolved organic matters(DOMs)removal from sewage,and investigated the modification effect of different types of chemicals on the structure of synthesized SBC.Waste activated sludge(WAS)was used as a carbon source,and HCl,HNO 3,and Na OH were used as different types of chemicals to modify the SBC.With the aid of chemical activation,the modified SBC showed higher adsorption performances on DOMs removal with maximum adsorption of 29.05 mg/g and second-order constant(k)of 0.1367(L/mol/sec)due to the surface elution of ash and minerals by chemicals.The surface elemental composition of MSBC suggested that the content of C-C and C-O functional groups on the surface of modified sludge-based activated carbon(MSBC)played an important role on the adsorption capacities of MSBC towards DOMs removal in sewage.Additionally,the residual molecular weight of DOMs in sewage was investigated using a 3-dimension fluorescence excitationemission matrix(3 D-EEM)and high-performance size exclusion chromatography(HP-SEC).Results showed that the chemical modification significantly improved the adsorption capacity of MSBC on humic acids(HA)and aromatic proteins(APN),and both of Na OH-MSBC and HCl-MSBC were effective for a wide range of different AMW DOMs removal from sewage,while the HNO 3-MSBC exhibited poorly on AMW organics of 2,617 Da and 409 Da due to the reducing content of macropore.In brief,this study provides reference values for the impact of the chemicals of the activation stage before the SBCs application.展开更多
A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the ads...A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.展开更多
Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising...Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas.展开更多
Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily ...Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.展开更多
Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and hea...Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.展开更多
Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous brom...Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous bromide and ethylene.However,the critical characteristics that determine mediator functionality are lesser known.Fifteen biochar substrates were pyrolyzed at 600℃and 800℃,characterized by elemental analysis,X-ray photo spectrometry C and N surface speciation,X-ray powder diffraction,specific surface area analysis,and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions.A statistical analysis was performed to determine the biochar properties,critical for debromination kinetics and total debromination extent.It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane,that the highest first order rate constant was 0.082/hr,and the highest debromination extent was 27%in reactivity experiments with 0.1μmol(20μmol/L)1,2-dibromoethane,≈22 mmol/L Fe^(Ⅱ)GR,and 0.12 g/L soybean meal biochar(7 days).Contents of Ni,Zn,N,and P,and the relative contribution of quinone surface functional groups were significantly(p<0.05)positively correlated with 1,2-dibromoethane debromination,while adsorption,specific surface area,and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.展开更多
Aims:Reed(Phragmites australis)is a plant species with a seasonal reproductive cycle;it has a very high biomass in U Minh Thuong National Park,in Vietnam.This study aims to evaluate fresh and dry biomass of the reed a...Aims:Reed(Phragmites australis)is a plant species with a seasonal reproductive cycle;it has a very high biomass in U Minh Thuong National Park,in Vietnam.This study aims to evaluate fresh and dry biomass of the reed and the production of biochar from the plants.The biochar is then used as a bio-organic fertilizer for watermelon cultivation in agriculture.Methods:To achieve these objectives the following experiments were conducted(1)investtigating the fresh and dry biomass of reeds producing biochar using local methods;(2)adsorption with pig urine and chemical fertilizers(nitrogen,phosphorus and potash)to examine the uptake of chemical components into the water environment;(3)mixing biochar with inorganic mineral fertilizers and peat to creat inorganic fertilizer–biochar formulas,followed by an analysis of the chemical compositions of the mixtures;(4)using various biochar-based fertilizers to grow watermelon with local varieties.Results:The results show that reeds produce very high for biomass biochar fertilizer production.Reed biochar can adsorb components of pig urine,such as ammonium,nitrate,nitrogen and phosphorus along with inorganic substances such as nitrogen,phosphorus and potash.Therefore this study proposes the use of this biochar for watermelon cultivation and environment treatment in polluted regions.Conclusions:Biomass and biochar of reed are very high.The biochar can adsorb nitrogen,phosphorus and potash fertilizers.Additionally,biochar can be mixed with peat and inorganic mineral fertilizers for to watermelon cultivation in Mekong Delta.Implications of the research:Forest fires in U Minh Thuong National Park,caused by reed vegetation,occur annually and result in damage to property and human livelihoods.This research not only exploits renewable raw materials but also helps control the risk of forest fires.Originality/Valeu:This study aims to provide methods for controlling forest fires by producing biochar of from reed(Phragmites australis)U Minh Thuong National Park Vietnam.This species thrives and produces a large biomass during the rainy season,supllying dry material that contributes to the intensity of forest fires in the dry season in Vietnam.展开更多
Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms ...Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms has been considered as an effective and environmentally friendly strategy for remediating Pb/Zn-contaminated soil.However,there is still a lack of understanding the connection between heavy metal immobilization and plant responses,which hampers practical applications.Here,a 90-day pot experiment was conducted to investigate the integrated effects of biochar(WS700)and microorganisms including inorganic phosphate-solubilizing bacteria(IPSB)and sulfate reducing bacteria(SRB)on Pb and Zn synchronous immobilization and the physiological responses of Brassica rapa var.chinensis(Brassica).Compared with CK,bacteria-loaded biochar treatment declined the exchangeable Pb and Zn fraction by 94.69%−98.37%and 94.55%−99.52%,while increasing the residual state Pb and Zn by 75.50%−208.58%and 96.71%−110.85%,respectively.Three amendments enhanced Brassica growth by improving total chlorophyll content and superoxide dismutase(SOD)and peroxidase(POD)activities.The bacteria-loaded biochar treatment effectively regulated stomatal conductance and reduced intercellular CO_(2) concentration.Moreover,compared with CK,three amendments reduced MDA content by 28.84%,28.30%and 41.60%,respectively,under the high concentration of Pb and Zn.The findings demonstrated the significant role of bacterial-biochar consortia in immobilizing Pb and Zn and mitigating Pb and Zn-induced stress in plants by regulating photosynthetic characteristics and antioxidant enzyme activities.展开更多
While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to...While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions.展开更多
In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,th...In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,the impacts of the biochar(BC),M14+R27(MR),and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing,heading,and mature stages of wheat plants under field-plot conditions.A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with theM14 or R27 treatment.The BC+MRtreatment reduced the grain Cd content by 51.5%-67.7%and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75%in the rhizosphere soils compared with the BC or MR treatment.Compared with the BC or MR treatment,the relative abundances of the biomarkers associated with Gemmatimonas,Altererythrobacter,Gammaproteobacteria,Xanthomonadaceae,Phenylobacterium,and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents.In the BC+MR-treated root interior microbiome,the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor,while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor.Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes,leading to decreased wheat grain Cd uptake in the contaminated soil.展开更多
The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace K...The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO_(2) activation.Comprehensive investigations were conducted on three aspects:physicochemical structure evolution of biochar,mechanistic understanding of trace KOH-facilitated CO_(2) activation processes,and application characteristics for CO_(2) adsorption.Results demonstrate that biochar activated by trace KOH(<10%)and CO_(2) achieves comparable specific surface area(1244.09 m^(2)/g)to that obtained with 100%KOH activation(1425.10 m^(2)/g).The pore structure characteristics(specific surface area and pore volume)are governed by CO and CH4 generated through K-salt catalyzed reactions between CO_(2) and biochar.The optimal CO_(2) adsorption capacities of KBC adsorbent reached 4.70 mmol/g(0℃)and 7.25 mmol/g(25℃),representing the maximum values among comparable carbon adsorbents.The 5%KBC-CO_(2) sample exhibited CO_(2) adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions,attaining current average performance levels.Notably,CO_(2)/N_(2) selectivity(85∶15,volume ratio)reached 64.71 at 0.02 bar with robust cycling stability.Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO_(2) adsorption kinetics and enhance micropore storage capacity.This technical route offers simplicity,environmental compatibility,and scalability,providing critical references for large-scale preparation of high-quality carbon materials.展开更多
Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illust...Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.展开更多
Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were...Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were developed for enhancing the degradation of a model pollutant,tetracycline(TC),merely by airborne O_(2).Fh/B(3)NC showed excellent O_(2)activation activity for efficient TC degradation with a apparent TC degradation rate of 5.54,6.88,and 22.15 times that of B(3)NC,Fh,and raw BCs,respectively,where 1O_(2)and H_(2)O_(2)were identified as the dominant ROS for TC degradation.The B incorporation into the carbon lattice of Fh/B(3)NC promoted the generation of electron donors,sp2 C and the reductive B species,hence boosting Fe(III)reduction and 1O_(2)generation.O_(2)adsorption was enhanced due to the positively charged adsorption sites(C-B+and N-C+).And 1O_(2)was generated via Fe(II)catalyzed low-efficient successive one-electron transfer(O_(2)→O_(2)·−→1O_(2),H_(2)O_(2)),as well as biochar catalyzed high-efficient two-electron transfer(O_(2)→H_(2)O_(2)→1O_(2))that does not involve.O_(2)−as the intermediate.Moreover,Fh/B,N co-doped biochar showed a wide pH range,remarkable anti-interference capabilities,and effective detoxification.These findings shed new light on the development of environmentally benign BCs materials capable of degradading organic pollutants.展开更多
Dissolved organic matter(DOM)is ubiquitous in the environment and plays an important role in global ecosystems.However,our understanding of the evolution and molecular diversity of DOM from different biomass materials...Dissolved organic matter(DOM)is ubiquitous in the environment and plays an important role in global ecosystems.However,our understanding of the evolution and molecular diversity of DOM from different biomass materials and biochar is not enough.Herein,we investigated the changes in DOM from seven biomass and biochar samples over a bio-incubation of 28 days,and explored their contents,and optical,chemical,and molecular characteristics.The results indicated that dissolved organic carbon(DOC)from different sources all exhibited a gradually decreasing trends during the incubation,while the absorbance and aromaticity gradually increased.Biomass DOM was characterized by higher DOC concentrations and a higher degradation rate,whereas biochar DOM had high aromaticity and little variability.Parallel factor analysis results showed that the protein-like fluorescent groups were as only detected in biomass DOM,while the dominant humic-like components were identified in biochar DOM.Additionally,the molecular composition of DOM from different sources was different,and biomass DOM contained more carbohydrate-like and saturated compounds.More sulfur-containing compounds were detected in Ceratophyllum demersum(CD)DOM,which may indicate that the leaching of CD litter was an important source of sulfur-containing species in aquatic environments.Furthermore,biochar DOM had greater aromaticity and a higher degree of oxidation than the corresponding biomass DOM.This study provided a detailed understanding of the molecular diversity of DOM by considering its various sources,and the results are helpful for further understanding their chemical properties and structures.展开更多
Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targ...Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.展开更多
To achieve the sustainable development and carbon neutral target,biomass chitosan(CS)was used to prepare N,S-doped biochar(NSB)with the assistance of sodium dodecyl benzene sulfonate(SDBS).The synthetic route was deve...To achieve the sustainable development and carbon neutral target,biomass chitosan(CS)was used to prepare N,S-doped biochar(NSB)with the assistance of sodium dodecyl benzene sulfonate(SDBS).The synthetic route was developed,which does not require the activation that is frequently-used for active carbon materials.By manipulating their interaction,SDBS was deposited with CS in neutral and basic conditions.Subsequent calcination successfully has access to NSB.It features with hierarchical porous structure and abundant functional groups.The dually-doped NSB bears excellent adsorption performance towards chlortetracycline(CTC).The adsorption capacity reaches 101.3 mg g^(-1) within 4 h.It is 200%higher than that of N-doped biochar(NB)prepared by only CS.The renewable and cost-effective raw materials and simple preparation method would enable NSB to be a good candidate for remedying antibiotics in the environment.展开更多
This experiment evaluated the effects of the mycorrhizal fungus Glomus mosseae,Azotobacter chroococcum bacteria,and Biochar on the characteristics of the root system,and yield of the cucumber plant,Cucumis sativus L.,...This experiment evaluated the effects of the mycorrhizal fungus Glomus mosseae,Azotobacter chroococcum bacteria,and Biochar on the characteristics of the root system,and yield of the cucumber plant,Cucumis sativus L.,for this purpose,experiment designed:the first factor is a combination of Mycorrhizae(M)at 35 g plant-1,Azotobacter(A)15 ml plant-1 with a microbial density of 2.2,and three concentrations(0,5,10%)of Biochar sprayed on the plant.The results of the research demonstrated that using mycorrhizae,Azotobacter bacteria,and phosphate rock with half the mineral recommendation(MAR)and spraying Biochar at a concentration of 10%gave the highest rate of infection of the roots with mycorrhizae,amounting to 80%,and the highest dry weight of the root system reached 84.53 g.The highest number of total bacteria was 8.74 log Cfu g m-1 of soil,the highest plant height reached 375.0 cm,the highest dry weight of the shoot reached 101.66 g plant-1,and the highest yield for the greenhouse was 4.501 ton greenhouse-1,followed by the treatment of adding Mycorrhiza with phosphate rock and half the mineral recommendation(MR)with Biochar at a concentration of 10%,then treatment with the addition of mycorrhizae with Azotobacter bacteria with half the mineral recommendation(AR)with 10%of Biochar.It is possible to eliminate half of the mineral recommendation by using these fertilizers,reduce the harmful impact of pollution on the environment and enhance sustainability in agriculture.展开更多
In this study,a pristine biochar(BCP)from dead Posidonia oceanica leaves,a by-product of biofuel production,and its two chemically activated forms with KOH(BBCP)and with H_(3)PO_(4)(ABCP)were tested as new adsorbent m...In this study,a pristine biochar(BCP)from dead Posidonia oceanica leaves,a by-product of biofuel production,and its two chemically activated forms with KOH(BBCP)and with H_(3)PO_(4)(ABCP)were tested as new adsorbent materials for the recovery of three rare earth cations(REE),namely La^(3+),Dy^(3+)and Nd^(3+)from aqueous solutions.The biochars were characterized through elemental analysis,nitrogen adsorption-desorption analysis,attenuated total reflectance-Fourier transform infrared(ATR-FT-IR)spectroscopy,scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDX),and pHpzcmeasurements.From single batch adsorption experiments at different pH values,the pH=5.0 was chosen as the best pH value for kinetic and isotherm adsorption studies.The effect of ionic medium on the adsorption ability of the best REE adsorbent ABCP was also evaluated by carrying out isotherm experiments in 0.1 mol/L NaNO3.Inductively coupled plasma optical emission spectroscopy(ICP-OES)was used to evaluate the REE concentration in the solutions.Kinetic and isotherm data of REE adsorption were tentatively subjected to regression analysis with various kinetic and isotherm equations.The parameter values of the best fit models and characterization results were analyzed to obtain information about the adsorption mechanism.The recyclability of ABCP adsorbent was also evaluated through recycle and reuse column experiments in which 0.1 mol/L HNO3and EDTA were used as extractant solutions.The chemical activation processes enhance the adsorption capacity of BCP by increasing the carbonization,the specific and microporous surface area,the pore volume and,in the case of activation with H_(3)PO_(4),introducing phosphate groups in the biochar structure.The promising REE recovery results obtained with ABCP transform the biochar from a by-product to a high value-added material.This contributes to making biofuel production a more cost-effective and environmentally-friendly process.展开更多
基金The United Envirotech Water Treatment(Dafeng)Co.,Ltd(project no.04150700723).
文摘Sludge biochar,a carbonized product of raw sludge,contains porous architectures that can act as epicenters for adsorbing external molecules through physical or chemical bonding.Sludge biochar also immobilizes innate micropollutants,which is advantageous over conventional sludge disposal methods.To date,numerous strategies have been discovered to improve sludge biochar morphology,but the influential factors,pore tuning mechanisms,and process feasibility remain imprecise.This knowledge gap limits our ability to design a robust sludge-based biochar.Herein,we present state-of-the-art sludge biochar synthesis methods with insight into structural and chemical transformation mechanisms.Roadblocks and novel concepts for improving sludge biochar porous architecture are highlighted.For the first time,sludge biochar properties,adsorption performances,and techno-economic perspectives were compared with commercial activated carbon(AC)to reveal the precise challenges in sludge biochar application.More importantly,sludge biochar role in carbon sequestration is detailed to demonstrate the environmental significance of this technology.Eventually,the review concludes with an overview of prospects and an outlook for developing sludge biochar-based research.
基金support provided by the Center for Fabrication and Application of Electronic Materials at Dokuz Eylül University,Türkiye。
文摘Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz.
基金the National Natural Science Foundation of China(Nos.51678546 and 41630318)the Chinese Universities Scientific Fund for Gradle plan of the China University of Geosciences(Wuhan)the National water pollution control and management technology major projects(Nos.2018ZX07105003 and 2018ZX 07110004)。
文摘This study aimed to explore the adsorption performance of sludge-based activated carbon(SBC)towards dissolved organic matters(DOMs)removal from sewage,and investigated the modification effect of different types of chemicals on the structure of synthesized SBC.Waste activated sludge(WAS)was used as a carbon source,and HCl,HNO 3,and Na OH were used as different types of chemicals to modify the SBC.With the aid of chemical activation,the modified SBC showed higher adsorption performances on DOMs removal with maximum adsorption of 29.05 mg/g and second-order constant(k)of 0.1367(L/mol/sec)due to the surface elution of ash and minerals by chemicals.The surface elemental composition of MSBC suggested that the content of C-C and C-O functional groups on the surface of modified sludge-based activated carbon(MSBC)played an important role on the adsorption capacities of MSBC towards DOMs removal in sewage.Additionally,the residual molecular weight of DOMs in sewage was investigated using a 3-dimension fluorescence excitationemission matrix(3 D-EEM)and high-performance size exclusion chromatography(HP-SEC).Results showed that the chemical modification significantly improved the adsorption capacity of MSBC on humic acids(HA)and aromatic proteins(APN),and both of Na OH-MSBC and HCl-MSBC were effective for a wide range of different AMW DOMs removal from sewage,while the HNO 3-MSBC exhibited poorly on AMW organics of 2,617 Da and 409 Da due to the reducing content of macropore.In brief,this study provides reference values for the impact of the chemicals of the activation stage before the SBCs application.
基金Project(51008106)supported by the National Natural Science Foundation of China
文摘A batch experiment was conducted to investigate the adsorption of an acid dye(Acid Orange 51) and a basic dye(Safranine) from aqueous solutions by the sludge-based activated carbon(SBAC). The results show that the adsorption of Acid Orange 51 decreases at high p H values, whereas the uptake of Safranine is higher in neutral and alkaline solutions than that in acidic conditions. The adsorption time needed for Safranine to reach equilibrium is shorter than that for Acid Orange 51. The uptakes of the dyes both increase with temperature increasing, indicating that the adsorption process of the dyes onto SBAC is endothermic. The equilibrium data of the dyes are both best represented by the Redlich-Peterson model. At 25 °C, the maximum adsorption capacities of SBAC for Acid Orange 51 and Safranine are 248.70 mg/g and 525.84 mg/g, respectively. The Elovich model is found to best describe the adsorption process of both dyes, indicating that the rate-limiting step involves the chemisorption. It can be concluded that SBAC is a promising material for the removal of Acid Orange 51 and Safranine from aqueous solutions.
基金supported by the National Key Research and Development Program of China(2021YFE0101300 and 2021YFD1901102)the project supported by the Natural Science Basic Research Plan in Shaanxi Province,China(2023-JC-YB-185)the Ningxia Key Research and Development Program,China(2023BCF01018)。
文摘Long-term mulching has improved crop yields and farmland productivity in semiarid areas,but it has also increased greenhouse gas(GHG)emissions and depleted soil fertility.Biochar application has emerged as a promising solution for addressing these issues.In this study,we investigated the effects of four biochar application rates(no biochar(N)=0 t ha^(-1),low(L)=3 t ha^(-1),medium(M)=6 t ha^(-1),and high(H)=9 t ha^(-1))under film mulching and no mulching conditions over three growing seasons.We assessed the impacts on GHG emissions,soil organic carbon sequestration(SOCS),and maize yield to evaluate the productivity and sustainability of farmland ecosystems.Our results demonstrated that mulching increased maize yield(18.68-41.80%),total fixed C in straw(23.64%),grain(28.87%),and root(46.31%)biomass,and GHG emissions(CO_(2),10.78%;N_(2)O,3.41%),while reducing SOCS(6.57%)and GHG intensity(GHGI;13.61%).Under mulching,biochar application significantly increased maize yield(10.20%),total fixed C in straw(17.97%),grain(17.69%)and root(16.75%)biomass,and SOCS(4.78%).Moreover,it reduced the GHG emissions(CO_(2),3.09%;N_(2)O,6.36%)and GHGI(12.28%).These effects correlated with the biochar addition rate,with the optimal rate being 9.0 t ha^(-1).In conclusion,biochar application reduces CO_(2) and N_(2)O emissions,enhances CH_(4) absorption,and improves maize yield under film mulching.It also improves the soil carbon fixation capacity while mitigating the warming potential,making it a promising sustainable management method for mulched farmland in semiarid areas.
基金supported by the National Key Research and Development Program of China(No.2020YFC1808701).
文摘Arsenic(As)pollution in soils is a pervasive environmental issue.Biochar immobilization offers a promising solution for addressing soil As contamination.The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar.However,the influence of a specific property on As immobilization varies among different studies,and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge.To enhance immobilization efficiency and reduce labor and time costs,a machine learning(ML)model was employed to predict As immobilization efficiency before biochar application.In this study,we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models.The results demonstrated that the random forest(RF)model outperformed gradient boost regression tree and support vector regression models in predictive performance.Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization.These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils.Furthermore,the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization.These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.
基金support from the earmarked fund for XJARS(No.XJARS-06)the Bingtuan Science and Technology Program(Nos.2021DB019,2022CB001-01)+1 种基金the National Natural Science Foundation of China(No.42275014)the Guangdong Foundation for Program of Science and Technology Research,China(No.2023B1212060044)。
文摘Current research primarily focuses on emerging organic pollutants,with limited attention to emerging inorganic pollutants (EIPs).However,due to advances in detection technology and the escalating environmental and health challenges posed by pollution,there is a growing interest in treating waters contaminated with EIPs.This paper explores biochar characteristics and modification methods,encompassing physical,chemical,and biological approaches for adsorbing EIPs.It offers a comprehensive review of research advancements in employing biochar for EIPs remediation in water,outlines the adsorption mechanisms of EIPs by biochar,and presents an environmental and economic analysis.It can be concluded that using biochar for the adsorption of EIPs in wastewater exhibits promising potential.Nonetheless,it is noteworthy that certain EIPs like Au(III),Rh(III),Ir(III),Ru(III),Os(III),Sc(III),and Y(III),have not been extensively investigated regarding their adsorption onto biochar.This comprehensive review will catalyze further inquiry into the biochar-based adsorption of EIPs,addressing current research deficiencies and advancing the practical implementation of biochar as a potent substrate for EIP removal from wastewater streams.
文摘Dibromoethane is a widespread,persistent organic pollutant.Biochars are known mediators of reductive dehalogenation by layered Fe^(Ⅱ)-Fe^(Ⅲ)hydroxides(green rust),which can reduce 1,2-dibromoethane to innocuous bromide and ethylene.However,the critical characteristics that determine mediator functionality are lesser known.Fifteen biochar substrates were pyrolyzed at 600℃and 800℃,characterized by elemental analysis,X-ray photo spectrometry C and N surface speciation,X-ray powder diffraction,specific surface area analysis,and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions.A statistical analysis was performed to determine the biochar properties,critical for debromination kinetics and total debromination extent.It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane,that the highest first order rate constant was 0.082/hr,and the highest debromination extent was 27%in reactivity experiments with 0.1μmol(20μmol/L)1,2-dibromoethane,≈22 mmol/L Fe^(Ⅱ)GR,and 0.12 g/L soybean meal biochar(7 days).Contents of Ni,Zn,N,and P,and the relative contribution of quinone surface functional groups were significantly(p<0.05)positively correlated with 1,2-dibromoethane debromination,while adsorption,specific surface area,and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.
文摘Aims:Reed(Phragmites australis)is a plant species with a seasonal reproductive cycle;it has a very high biomass in U Minh Thuong National Park,in Vietnam.This study aims to evaluate fresh and dry biomass of the reed and the production of biochar from the plants.The biochar is then used as a bio-organic fertilizer for watermelon cultivation in agriculture.Methods:To achieve these objectives the following experiments were conducted(1)investtigating the fresh and dry biomass of reeds producing biochar using local methods;(2)adsorption with pig urine and chemical fertilizers(nitrogen,phosphorus and potash)to examine the uptake of chemical components into the water environment;(3)mixing biochar with inorganic mineral fertilizers and peat to creat inorganic fertilizer–biochar formulas,followed by an analysis of the chemical compositions of the mixtures;(4)using various biochar-based fertilizers to grow watermelon with local varieties.Results:The results show that reeds produce very high for biomass biochar fertilizer production.Reed biochar can adsorb components of pig urine,such as ammonium,nitrate,nitrogen and phosphorus along with inorganic substances such as nitrogen,phosphorus and potash.Therefore this study proposes the use of this biochar for watermelon cultivation and environment treatment in polluted regions.Conclusions:Biomass and biochar of reed are very high.The biochar can adsorb nitrogen,phosphorus and potash fertilizers.Additionally,biochar can be mixed with peat and inorganic mineral fertilizers for to watermelon cultivation in Mekong Delta.Implications of the research:Forest fires in U Minh Thuong National Park,caused by reed vegetation,occur annually and result in damage to property and human livelihoods.This research not only exploits renewable raw materials but also helps control the risk of forest fires.Originality/Valeu:This study aims to provide methods for controlling forest fires by producing biochar of from reed(Phragmites australis)U Minh Thuong National Park Vietnam.This species thrives and produces a large biomass during the rainy season,supllying dry material that contributes to the intensity of forest fires in the dry season in Vietnam.
基金Projects(2019NY-200,2020ZDLNY06-06,2020ZDLNY07-10)supported by the Key Research and Development Program of Shaanxi Province,ChinaProject(2019YFC1803604)supported by the National Key Research and Development Program of China。
文摘Lead(Pb)and zinc(Zn)are widely recognized as common environmental contaminants,contributing to soil degradation and posing risks to environmental health.Combining functional carbon-based materials with microorganisms has been considered as an effective and environmentally friendly strategy for remediating Pb/Zn-contaminated soil.However,there is still a lack of understanding the connection between heavy metal immobilization and plant responses,which hampers practical applications.Here,a 90-day pot experiment was conducted to investigate the integrated effects of biochar(WS700)and microorganisms including inorganic phosphate-solubilizing bacteria(IPSB)and sulfate reducing bacteria(SRB)on Pb and Zn synchronous immobilization and the physiological responses of Brassica rapa var.chinensis(Brassica).Compared with CK,bacteria-loaded biochar treatment declined the exchangeable Pb and Zn fraction by 94.69%−98.37%and 94.55%−99.52%,while increasing the residual state Pb and Zn by 75.50%−208.58%and 96.71%−110.85%,respectively.Three amendments enhanced Brassica growth by improving total chlorophyll content and superoxide dismutase(SOD)and peroxidase(POD)activities.The bacteria-loaded biochar treatment effectively regulated stomatal conductance and reduced intercellular CO_(2) concentration.Moreover,compared with CK,three amendments reduced MDA content by 28.84%,28.30%and 41.60%,respectively,under the high concentration of Pb and Zn.The findings demonstrated the significant role of bacterial-biochar consortia in immobilizing Pb and Zn and mitigating Pb and Zn-induced stress in plants by regulating photosynthetic characteristics and antioxidant enzyme activities.
基金supported by the Natural Science Basic Research Program of Shaanxi Province,China(2024JCYBQN-0491)Heng Wan would like to thank the Chinese Scholarship Council(CsC)(202206300064)。
文摘While biochar amendment enhances plant productivity and water-use efficiency(WUE),particularly under waterlimited conditions,the specific mechanisms driving these benefits remain unclear.Thus,the present study aims to elucidate the synergistic effects of biochar and reduced irrigation on maize(Zea mays L.)plants,focusing on xylem composition,root-to-shoot signaling,stomatal behavior,and WUE.Maize plants were cultivated in splitroot pots filled with clay loam soil,amended by either wheat-straw biochar(WSB)or softwood biochar(SWB)at 2%(w/w).Plants received full irrigation(FI),deficit irrigation(DI),or partial root-zone drying rrigation(PRD)from the 4-leaf to the grain-filling stage.Our results revealed that the WSB amendment significantly enhanced plant water status,biomass accumulation,and WUE under reduced irrigation,particularly when combined with PRD.Although reduced irrigation inhibited photosynthesis,it enhanced WUE by modulating stomatal morphology and conductance.Biochar amendment combined with reduced rrigation significantly increased xylem K^(+),Ca^(2+),Mg^(2+),NO_(3)^(-),Cl^(-),PO_(4)^(3-),and SO_(4)^(2-)-but decreased Na+,which in turn lowered xylem pH.Moreover,biochar amendment and especially WSB amendment further increased abscisic acid(ABA)contents in both leaf and xylem sap under reduced irrigation conditions due to changes in xylem ionic constituents and pH.The synergistic interactions between xylem components and ABA led to refined adjustments in stomatal size and density,thereby affecting stomatal conductance and ultimately improving the WUE of maize plants at different scales.The combined application of WSB and PRD can,therefore,emerge as a promising approach for improving the overall plant performance of maize plants with increased stomatal adaptations and WUE,especially under water-limited conditions.
基金supported by the National Natural Science Foundation of China(No.41977199).
文摘In this study,two wheat-derived cadmium(Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions.Then,the impacts of the biochar(BC),M14+R27(MR),and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing,heading,and mature stages of wheat plants under field-plot conditions.A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with theM14 or R27 treatment.The BC+MRtreatment reduced the grain Cd content by 51.5%-67.7%and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75%in the rhizosphere soils compared with the BC or MR treatment.Compared with the BC or MR treatment,the relative abundances of the biomarkers associated with Gemmatimonas,Altererythrobacter,Gammaproteobacteria,Xanthomonadaceae,Phenylobacterium,and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents.In the BC+MR-treated root interior microbiome,the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor,while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor.Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes,leading to decreased wheat grain Cd uptake in the contaminated soil.
基金supported by the National Natural Science Foundation of China(52376103,542B2081).
文摘The technology for green and macro-conversion of solid waste biomass to prepare high-quality activated carbon demands urgent development.This study proposes a technique for synthesizing carbon adsorbents using trace KOH-catalyzed CO_(2) activation.Comprehensive investigations were conducted on three aspects:physicochemical structure evolution of biochar,mechanistic understanding of trace KOH-facilitated CO_(2) activation processes,and application characteristics for CO_(2) adsorption.Results demonstrate that biochar activated by trace KOH(<10%)and CO_(2) achieves comparable specific surface area(1244.09 m^(2)/g)to that obtained with 100%KOH activation(1425.10 m^(2)/g).The pore structure characteristics(specific surface area and pore volume)are governed by CO and CH4 generated through K-salt catalyzed reactions between CO_(2) and biochar.The optimal CO_(2) adsorption capacities of KBC adsorbent reached 4.70 mmol/g(0℃)and 7.25 mmol/g(25℃),representing the maximum values among comparable carbon adsorbents.The 5%KBC-CO_(2) sample exhibited CO_(2) adsorption capacities of 3.19 and 5.01 mmol/g under respective conditions,attaining current average performance levels.Notably,CO_(2)/N_(2) selectivity(85∶15,volume ratio)reached 64.71 at 0.02 bar with robust cycling stability.Molecular dynamics simulations revealed that oxygen-containing functional groups accelerate CO_(2) adsorption kinetics and enhance micropore storage capacity.This technical route offers simplicity,environmental compatibility,and scalability,providing critical references for large-scale preparation of high-quality carbon materials.
基金financially supported by National Key R&D Program International Cooperation Project(2023YFE0108100)Natural Science Foundation of China(No.52170085)+2 种基金Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)Tianjin Post-graduate Students Research and Innovation Project(2021YJSB013)Fundamental Research Funds for the Central Universities,Nankai University.
文摘Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.
基金supported by the National Natural Science Foundation of China(No.U21A20293).
文摘Harnessing the redox potential of biochar to activate airborne O_(2)for contaminant removal is challenging.In this study,ferrihydrite(Fh)modified the boron(B),nitrogen(N)co-doped biochars(BCs)composites(Fh/B(n)NC)were developed for enhancing the degradation of a model pollutant,tetracycline(TC),merely by airborne O_(2).Fh/B(3)NC showed excellent O_(2)activation activity for efficient TC degradation with a apparent TC degradation rate of 5.54,6.88,and 22.15 times that of B(3)NC,Fh,and raw BCs,respectively,where 1O_(2)and H_(2)O_(2)were identified as the dominant ROS for TC degradation.The B incorporation into the carbon lattice of Fh/B(3)NC promoted the generation of electron donors,sp2 C and the reductive B species,hence boosting Fe(III)reduction and 1O_(2)generation.O_(2)adsorption was enhanced due to the positively charged adsorption sites(C-B+and N-C+).And 1O_(2)was generated via Fe(II)catalyzed low-efficient successive one-electron transfer(O_(2)→O_(2)·−→1O_(2),H_(2)O_(2)),as well as biochar catalyzed high-efficient two-electron transfer(O_(2)→H_(2)O_(2)→1O_(2))that does not involve.O_(2)−as the intermediate.Moreover,Fh/B,N co-doped biochar showed a wide pH range,remarkable anti-interference capabilities,and effective detoxification.These findings shed new light on the development of environmentally benign BCs materials capable of degradading organic pollutants.
基金supported by the National Natural Science Foundation of China(No.42192514)Guangdong Major Project of Basic and Applied Basic Research(No.2023B0303000007)and Guangdong Foundation for Program of Science and Technology Research(No.2023B1212060049)。
文摘Dissolved organic matter(DOM)is ubiquitous in the environment and plays an important role in global ecosystems.However,our understanding of the evolution and molecular diversity of DOM from different biomass materials and biochar is not enough.Herein,we investigated the changes in DOM from seven biomass and biochar samples over a bio-incubation of 28 days,and explored their contents,and optical,chemical,and molecular characteristics.The results indicated that dissolved organic carbon(DOC)from different sources all exhibited a gradually decreasing trends during the incubation,while the absorbance and aromaticity gradually increased.Biomass DOM was characterized by higher DOC concentrations and a higher degradation rate,whereas biochar DOM had high aromaticity and little variability.Parallel factor analysis results showed that the protein-like fluorescent groups were as only detected in biomass DOM,while the dominant humic-like components were identified in biochar DOM.Additionally,the molecular composition of DOM from different sources was different,and biomass DOM contained more carbohydrate-like and saturated compounds.More sulfur-containing compounds were detected in Ceratophyllum demersum(CD)DOM,which may indicate that the leaching of CD litter was an important source of sulfur-containing species in aquatic environments.Furthermore,biochar DOM had greater aromaticity and a higher degree of oxidation than the corresponding biomass DOM.This study provided a detailed understanding of the molecular diversity of DOM by considering its various sources,and the results are helpful for further understanding their chemical properties and structures.
基金supported by the National Natural Science Foundation of China(No.52200049)the China Postdoctoral Science Foundation(No.2022TQ0089)the Heilongjiang Province Postdoctoral Science Foundation(No.LBHZ22181).
文摘Humic acid(HA),as a represent of natural organic matter widely existing in water body,dose harm to water quality and human health;however,it was commonly treated as an environmental background substance while not targeted contaminant in advanced oxidation processes(AOPs).Herein,we investigated the removal of HA in the alkali-activated biochar(KBC)/peroxymonosulfate(PMS)system.The modification of the original biochar(BC)resulted in an increased adsorption capacity and catalytic activity due to the introduction of more micropores,mesopores,and oxygen-containing functional groups,particularly carbonyl groups.Mechanistic insights indicated that HA is primarily chemically adsorbed on the KBC surface,while singlet oxygen(^(1)O_(2))produced by the PMS decomposition served as the major reactive species for the degradation of HA.An underlying synergistic adsorption and oxidation mechanism involving a local high concentration reaction region around the KBC interface was then proposed.This work not only provides a cost-effective solution for the elimination of HA but also advances our understanding of the nonradical oxidation at the biochar interface.
基金supported by the National Natural Science Foundation of China(22276046).
文摘To achieve the sustainable development and carbon neutral target,biomass chitosan(CS)was used to prepare N,S-doped biochar(NSB)with the assistance of sodium dodecyl benzene sulfonate(SDBS).The synthetic route was developed,which does not require the activation that is frequently-used for active carbon materials.By manipulating their interaction,SDBS was deposited with CS in neutral and basic conditions.Subsequent calcination successfully has access to NSB.It features with hierarchical porous structure and abundant functional groups.The dually-doped NSB bears excellent adsorption performance towards chlortetracycline(CTC).The adsorption capacity reaches 101.3 mg g^(-1) within 4 h.It is 200%higher than that of N-doped biochar(NB)prepared by only CS.The renewable and cost-effective raw materials and simple preparation method would enable NSB to be a good candidate for remedying antibiotics in the environment.
文摘This experiment evaluated the effects of the mycorrhizal fungus Glomus mosseae,Azotobacter chroococcum bacteria,and Biochar on the characteristics of the root system,and yield of the cucumber plant,Cucumis sativus L.,for this purpose,experiment designed:the first factor is a combination of Mycorrhizae(M)at 35 g plant-1,Azotobacter(A)15 ml plant-1 with a microbial density of 2.2,and three concentrations(0,5,10%)of Biochar sprayed on the plant.The results of the research demonstrated that using mycorrhizae,Azotobacter bacteria,and phosphate rock with half the mineral recommendation(MAR)and spraying Biochar at a concentration of 10%gave the highest rate of infection of the roots with mycorrhizae,amounting to 80%,and the highest dry weight of the root system reached 84.53 g.The highest number of total bacteria was 8.74 log Cfu g m-1 of soil,the highest plant height reached 375.0 cm,the highest dry weight of the shoot reached 101.66 g plant-1,and the highest yield for the greenhouse was 4.501 ton greenhouse-1,followed by the treatment of adding Mycorrhiza with phosphate rock and half the mineral recommendation(MR)with Biochar at a concentration of 10%,then treatment with the addition of mycorrhizae with Azotobacter bacteria with half the mineral recommendation(AR)with 10%of Biochar.It is possible to eliminate half of the mineral recommendation by using these fertilizers,reduce the harmful impact of pollution on the environment and enhance sustainability in agriculture.
基金Project supported by Next Generation EUMission 4,Component 1,CUP:J53D23007540006-PRIN_2022HYH95P。
文摘In this study,a pristine biochar(BCP)from dead Posidonia oceanica leaves,a by-product of biofuel production,and its two chemically activated forms with KOH(BBCP)and with H_(3)PO_(4)(ABCP)were tested as new adsorbent materials for the recovery of three rare earth cations(REE),namely La^(3+),Dy^(3+)and Nd^(3+)from aqueous solutions.The biochars were characterized through elemental analysis,nitrogen adsorption-desorption analysis,attenuated total reflectance-Fourier transform infrared(ATR-FT-IR)spectroscopy,scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDX),and pHpzcmeasurements.From single batch adsorption experiments at different pH values,the pH=5.0 was chosen as the best pH value for kinetic and isotherm adsorption studies.The effect of ionic medium on the adsorption ability of the best REE adsorbent ABCP was also evaluated by carrying out isotherm experiments in 0.1 mol/L NaNO3.Inductively coupled plasma optical emission spectroscopy(ICP-OES)was used to evaluate the REE concentration in the solutions.Kinetic and isotherm data of REE adsorption were tentatively subjected to regression analysis with various kinetic and isotherm equations.The parameter values of the best fit models and characterization results were analyzed to obtain information about the adsorption mechanism.The recyclability of ABCP adsorbent was also evaluated through recycle and reuse column experiments in which 0.1 mol/L HNO3and EDTA were used as extractant solutions.The chemical activation processes enhance the adsorption capacity of BCP by increasing the carbonization,the specific and microporous surface area,the pore volume and,in the case of activation with H_(3)PO_(4),introducing phosphate groups in the biochar structure.The promising REE recovery results obtained with ABCP transform the biochar from a by-product to a high value-added material.This contributes to making biofuel production a more cost-effective and environmentally-friendly process.