期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Earth slope reliability analysis under seismic loadings using neural network 被引量:8
1
作者 彭怀生 邓建 古德生 《Journal of Central South University of Technology》 EI 2005年第5期606-610,共5页
A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method a... A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method and the deterministic stability analysis method of earth slope. The performance function and its derivatives in slope stability analysis under seismic loadings were approximated by a trained multi-layer feed-forward neural network with differentiable transfer functions. The statistical moments calculated from the performance function values and the corresponding gradients using neural network were then used in the first order second moment method for the calculation of the reliability index in slope safety analysis. Two earth slope examples were presented for illustrating the applicability of the proposed approach. The new method is effective in slope reliability analysis. And it has potential application to other reliability problems of complicated engineering structure with a considerably large number of random variables. 展开更多
关键词 slope reliability analysis neural network seismic loadings
在线阅读 下载PDF
Probabilistic back-analysis of rainfall-induced landslides for slope reliability prediction with multi-source information 被引量:1
2
作者 Shui-Hua Jiang Hong-Hu Jie +2 位作者 Jiawei Xie Jinsong Huang Chuang-Bing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3575-3594,共20页
Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(includi... Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China. 展开更多
关键词 Rainfall-induced landslide Spatial variability Probabilistic back-analysis slope reliability analysis Bayesian updating
在线阅读 下载PDF
Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces 被引量:16
3
作者 Bin Wang Leilei Liu +1 位作者 Yuehua Li Quan Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期642-655,共14页
Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper propose... Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature. 展开更多
关键词 slope reliability analysis Spatial variability Representative slip surfaces(RSSs) Response surface method(RSM) Random field simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部