In this paper,we have mainly studied the amplification effect of thulium-doped fiber amplifier(TDFA)at 2µm,and compared different amplification effects of the one-stage TDFA,two-stage TDFA and three-stage TDFA at...In this paper,we have mainly studied the amplification effect of thulium-doped fiber amplifier(TDFA)at 2µm,and compared different amplification effects of the one-stage TDFA,two-stage TDFA and three-stage TDFA at proper conditions.The simulation results show that within the effective threshold,with the increase of the pump power,the amplification effect of the optical amplifier improves,but the signal-to-noise ratio(SNR)of the output signal decreases,in order to balance the gain benefit and noise coefficient of TDFA,we can use a multi-stage amplification structure.Three-stage backward-pumped series 2.06µm TDFA,whose slope efficiency can achieve 11%at certain condition.At 5.2 W pump power,the output signal gain of 2µm TDFA exceeds 20 dB,and the output SNR is higher than 32 dB.In addition,the effect of the optimum length of thulium-doped fiber on the amplification performance of 2µm TDFA is also analyzed in this paper.These simulation results are important for the experiment and design of 2µm TDFA.展开更多
In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,th...In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,the average output power of the fundamental laser at 1064 nm reaches as high as 20.98 W at a repetition rate of 50 Hz with a maximum single pulse energy of 419.6 mJ,corresponding to a maximum optical conversion efficiency of 38.8%and a slope efficiency of 41%.展开更多
Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and ...Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.展开更多
Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission wit...Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of ^4F3/2→^4I9/2are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature.The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is,thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state.展开更多
Performances of blue and green laser diodes(LDs) with different u-InGaN upper waveguides(UWGs) are investigated theoretically by using LASTIP. It is found that the slope efficiency(SE) of blue LD decreases due t...Performances of blue and green laser diodes(LDs) with different u-InGaN upper waveguides(UWGs) are investigated theoretically by using LASTIP. It is found that the slope efficiency(SE) of blue LD decreases due to great optical loss when the indium content of u-InGaN UWG is more than 0.02, although its leakage current decreases obviously. Meanwhile the SE of the green LD increases when the indium content of u-InGaN UWG is varied from 0 to 0.05, which is attributed to the reduction of leakage current and the small increase of optical loss. Therefore, a new blue LD structure with In(0.05) Ga(0.95)N lower waveguide(LWG) is designed to reduce the optical loss, and its slope efficiency is improved significantly.展开更多
Polymers are a kind of attractive hosts for laser dyes due to their high transparency in both pumping and lasing ranges and superior optical homogeneity. In this paper solid dye samples based on polymethyl methacryla...Polymers are a kind of attractive hosts for laser dyes due to their high transparency in both pumping and lasing ranges and superior optical homogeneity. In this paper solid dye samples based on polymethyl methacrylate (PMMA) doped with different concentrations of 1, 3, 5, 7, 8 -pentamethyl-2, 6-diethylpyrromethene-BF2 (PM567) are prepared. The absorption, fluorescence and lasing spectra of the samples are obtained. Wide absorption and fluorescence bands are obtained and a red shift of the maxima of the lasing emission spectra is observed. With the second-harmonic generation of Q-switched Nd:YAC laser (532 nm, -20 ns) pumping the samples longitudinally, the slope efficiencies of the samples are obtained. There is an optimal dye concentration for the highest slope efficiency when the pumping energy is lower than some typical value (-250 mJ), and the highest slope efficiency 35.6% is obtained in the sample with a dye concentration of 2 × 10^-4 mol/L. Pumping the samples at a rate of 10Hz with a pulse energy as high as 200 mJ (the fluence is 0.2 J/cm^2), the output energy drops to one-half of its initial value after approximate 15500 pulses and the normalized photostability is 5.17CJ/mol. A kind of solid dye laser which could have some applications is built.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(Nos.2023A1515010093)the Shenzhen Fundamental Research Program(Nos.JCYJ20220809170611004,20231121110828001 and 20231121113641002)the Taipei University of Technology-Shenzhen University Joint Research Program(No.2024001).
文摘In this paper,we have mainly studied the amplification effect of thulium-doped fiber amplifier(TDFA)at 2µm,and compared different amplification effects of the one-stage TDFA,two-stage TDFA and three-stage TDFA at proper conditions.The simulation results show that within the effective threshold,with the increase of the pump power,the amplification effect of the optical amplifier improves,but the signal-to-noise ratio(SNR)of the output signal decreases,in order to balance the gain benefit and noise coefficient of TDFA,we can use a multi-stage amplification structure.Three-stage backward-pumped series 2.06µm TDFA,whose slope efficiency can achieve 11%at certain condition.At 5.2 W pump power,the output signal gain of 2µm TDFA exceeds 20 dB,and the output SNR is higher than 32 dB.In addition,the effect of the optimum length of thulium-doped fiber on the amplification performance of 2µm TDFA is also analyzed in this paper.These simulation results are important for the experiment and design of 2µm TDFA.
基金supported by the Nanjing University of Posts and Telecommunications Foundation,China(Grant Nos.JUH219002 and JUH219007)the Key R&D Program of Shandong Province,China(Grant No.2021CXGC010202)。
文摘In this paper,we present a high peak power passively Q-switched intracavity frequency-doubled green laser based on an efficient LED-pumped Nd:YAG dual-rod laser module.In quasi-continuous wave(QCW)running operation,the average output power of the fundamental laser at 1064 nm reaches as high as 20.98 W at a repetition rate of 50 Hz with a maximum single pulse energy of 419.6 mJ,corresponding to a maximum optical conversion efficiency of 38.8%and a slope efficiency of 41%.
文摘Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.
基金Project supported by Estahban Branch,Islamic Azad University
文摘Spectroscopic properties of flashlamp pumped Nd^3+:YAG laser are studied as a function of temperature in a range from-30℃ to 60℃. The spectral width and shift of quasi three-level 946.0-nm inter-Stark emission within the respective intermanifold transitions of ^4F3/2→^4I9/2are investigated. The 946.0-nm line shifts toward the shorter wavelength and broadens. In addition, the threshold power and slope efficiency of the 946.0-nm laser line are quantified with temperature.The lower the temperature, the lower the threshold power is and the higher the slope efficiency of the 946.0-nm laser line is,thus the higher the laser output is. This phenomenon is attributed to the ion-phonon interaction and the thermal population in the ground state.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFB0400803 and 2016YFB0401801)the National Natural Science Foundation of China(Grant Nos.61674138,61674139,61604145,61574135,61574134,61474142,61474110,61377020,and 61376089)+1 种基金the Science Challenge Project,China(Grant No.TZ2016003)the Beijing Municipal Science and Technology Project,China(Grant No.Z161100002116037)
文摘Performances of blue and green laser diodes(LDs) with different u-InGaN upper waveguides(UWGs) are investigated theoretically by using LASTIP. It is found that the slope efficiency(SE) of blue LD decreases due to great optical loss when the indium content of u-InGaN UWG is more than 0.02, although its leakage current decreases obviously. Meanwhile the SE of the green LD increases when the indium content of u-InGaN UWG is varied from 0 to 0.05, which is attributed to the reduction of leakage current and the small increase of optical loss. Therefore, a new blue LD structure with In(0.05) Ga(0.95)N lower waveguide(LWG) is designed to reduce the optical loss, and its slope efficiency is improved significantly.
文摘Polymers are a kind of attractive hosts for laser dyes due to their high transparency in both pumping and lasing ranges and superior optical homogeneity. In this paper solid dye samples based on polymethyl methacrylate (PMMA) doped with different concentrations of 1, 3, 5, 7, 8 -pentamethyl-2, 6-diethylpyrromethene-BF2 (PM567) are prepared. The absorption, fluorescence and lasing spectra of the samples are obtained. Wide absorption and fluorescence bands are obtained and a red shift of the maxima of the lasing emission spectra is observed. With the second-harmonic generation of Q-switched Nd:YAC laser (532 nm, -20 ns) pumping the samples longitudinally, the slope efficiencies of the samples are obtained. There is an optimal dye concentration for the highest slope efficiency when the pumping energy is lower than some typical value (-250 mJ), and the highest slope efficiency 35.6% is obtained in the sample with a dye concentration of 2 × 10^-4 mol/L. Pumping the samples at a rate of 10Hz with a pulse energy as high as 200 mJ (the fluence is 0.2 J/cm^2), the output energy drops to one-half of its initial value after approximate 15500 pulses and the normalized photostability is 5.17CJ/mol. A kind of solid dye laser which could have some applications is built.