With the growing needs of prepreg tapes for the automated fiber placement(AFP),the deviation-rectifying of prepreg in slitting process was investigated on a self-developed 16-tow prepreg slitting and winding machine.T...With the growing needs of prepreg tapes for the automated fiber placement(AFP),the deviation-rectifying of prepreg in slitting process was investigated on a self-developed 16-tow prepreg slitting and winding machine.The process of slitting and rewinding of prepreg tape was introduced,and the reason of prepreg tape deviation in slitting process was analyzed.In order to ensure the quality of the narrow prepreg slits,the application of the fuzzy PID algorithm in a closed-loop control system was discussed.A fuzzy PID algorithm was designed by combining fuzzy rules and PID controller.By applying it to precise deviation-rectifying control strategy,the automatic control of rectification could be achieved with accuracy of 0.1 mm,which satisfies the requirement of the prepreg tape both in slitting quality and layup quality for AFP.展开更多
背景:轴突导向因子可能在α-突触核蛋白相关神经退行性疾病中发挥重要作用。目的:探讨轴突导向因子在α-突触核蛋白相关神经退行性疾病中的作用及机制。方法:由第一作者系统检索中国知网、万方数据库、PubMed、Nature、Embase、Web of S...背景:轴突导向因子可能在α-突触核蛋白相关神经退行性疾病中发挥重要作用。目的:探讨轴突导向因子在α-突触核蛋白相关神经退行性疾病中的作用及机制。方法:由第一作者系统检索中国知网、万方数据库、PubMed、Nature、Embase、Web of Sciense、JAMA、BMJ等数据库,中文检索词为“帕金森病,轴突导向因子,路易体痴呆,多系统衰竭,单纯性自主神经功能衰竭”,英文检索词为“Parkinson’s disease,axon guidance molecules,Netrin,Ephrin,Semaphorin,Slit,Dementia with Lewy Bodies,Multiple System Atrophy,Pure Autonomic Failure”,全面收集并整理近年来有关轴突导向因子与α-突触核蛋白相关神经退行性疾病的文献,最终纳入89篇文献进行综述分析。结果与结论:轴突导向因子蛋白家族包括Netrins、Ephrins、Semaphorins和Slits。Netrins通过影响肠道因子、依赖DCC受体调节多巴胺能神经元活力,进而影响神经退行性疾病进程。在Ephrins家族中,EphrinA/EphA参与介导神经元再生信号,EphA1借CXC趋化因子配体12/CXC趋化因子受体4通路调节炎症与神经病理,影响疾病发展。Semaphorins家族中的Semaphorins-3通过引导多巴胺能神经元轴突从黑质向纹状体生长,进而改善神经退行性疾病的行为学症状。在多巴胺能神经元轴突传导通路上,Slits经Slit/Robo等信号协作调控轴突定位与寻路过程,确保神经元信号传导路径的准确性,对神经元连接的维持与修复具有重要意义。展开更多
Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rat...Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.展开更多
The fast and convenient demultiplex of optical vortex(OV) mode is crucial for its further application. We propose a novel approach that combines classic Young's doublet with an OV source to effectively identify th...The fast and convenient demultiplex of optical vortex(OV) mode is crucial for its further application. We propose a novel approach that combines classic Young's doublet with an OV source to effectively identify the OV mode through the analysis of interference patterns. The interference patterns of the OV source incident on the double slits can be perfectly illustrated by using both the classical double-slit interference method and the Huygens–Fresnel principle. The interference fringes will twist along the negative or positive direction of x axis when topological charge(TC)l>0 or l<0, and the degree of the movement varies with the TC, allowing for a quantitative display of the OV characteristics through the interference patterns. Additionally, we deduce analytically that the zeroth-order interference fringe has a linear relationship with the TC and the vertical position. These findings highlight the ability to identify the OV mode by analyzing the interference patterns produced by Young's doublet.展开更多
It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity...It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
基金financially supported by the National Basic Research Program of China(973Program)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities ( No. 3082615NS2015056)
文摘With the growing needs of prepreg tapes for the automated fiber placement(AFP),the deviation-rectifying of prepreg in slitting process was investigated on a self-developed 16-tow prepreg slitting and winding machine.The process of slitting and rewinding of prepreg tape was introduced,and the reason of prepreg tape deviation in slitting process was analyzed.In order to ensure the quality of the narrow prepreg slits,the application of the fuzzy PID algorithm in a closed-loop control system was discussed.A fuzzy PID algorithm was designed by combining fuzzy rules and PID controller.By applying it to precise deviation-rectifying control strategy,the automatic control of rectification could be achieved with accuracy of 0.1 mm,which satisfies the requirement of the prepreg tape both in slitting quality and layup quality for AFP.
文摘背景:轴突导向因子可能在α-突触核蛋白相关神经退行性疾病中发挥重要作用。目的:探讨轴突导向因子在α-突触核蛋白相关神经退行性疾病中的作用及机制。方法:由第一作者系统检索中国知网、万方数据库、PubMed、Nature、Embase、Web of Sciense、JAMA、BMJ等数据库,中文检索词为“帕金森病,轴突导向因子,路易体痴呆,多系统衰竭,单纯性自主神经功能衰竭”,英文检索词为“Parkinson’s disease,axon guidance molecules,Netrin,Ephrin,Semaphorin,Slit,Dementia with Lewy Bodies,Multiple System Atrophy,Pure Autonomic Failure”,全面收集并整理近年来有关轴突导向因子与α-突触核蛋白相关神经退行性疾病的文献,最终纳入89篇文献进行综述分析。结果与结论:轴突导向因子蛋白家族包括Netrins、Ephrins、Semaphorins和Slits。Netrins通过影响肠道因子、依赖DCC受体调节多巴胺能神经元活力,进而影响神经退行性疾病进程。在Ephrins家族中,EphrinA/EphA参与介导神经元再生信号,EphA1借CXC趋化因子配体12/CXC趋化因子受体4通路调节炎症与神经病理,影响疾病发展。Semaphorins家族中的Semaphorins-3通过引导多巴胺能神经元轴突从黑质向纹状体生长,进而改善神经退行性疾病的行为学症状。在多巴胺能神经元轴突传导通路上,Slits经Slit/Robo等信号协作调控轴突定位与寻路过程,确保神经元信号传导路径的准确性,对神经元连接的维持与修复具有重要意义。
基金supported by the National Natural Science Foundation of China(No.52175269)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)+2 种基金Science and Technology Research Project of Education Department of Jilin Province(JJKH20231146KJ,JJKH20241262KJ)Project ZR2024ME104 supported by Shandong Provincial Natural Science FoundationChina Postdoctoral Science Foundation(No.2024M751086).
文摘Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFA0710100 and 2023YFA1407100)the National Natural Science Foundation of China (Grant Nos.92050102 and 12374410)+2 种基金the Jiangxi Provincial Natural Science Foundation (Grant No.20224ACB201005)the Fundamental Research Funds for the Central Universities (Grant Nos.20720230102 and 20720220033)China Scholarship Council (Grant No.202206310009)。
文摘The fast and convenient demultiplex of optical vortex(OV) mode is crucial for its further application. We propose a novel approach that combines classic Young's doublet with an OV source to effectively identify the OV mode through the analysis of interference patterns. The interference patterns of the OV source incident on the double slits can be perfectly illustrated by using both the classical double-slit interference method and the Huygens–Fresnel principle. The interference fringes will twist along the negative or positive direction of x axis when topological charge(TC)l>0 or l<0, and the degree of the movement varies with the TC, allowing for a quantitative display of the OV characteristics through the interference patterns. Additionally, we deduce analytically that the zeroth-order interference fringe has a linear relationship with the TC and the vertical position. These findings highlight the ability to identify the OV mode by analyzing the interference patterns produced by Young's doublet.
基金financial support from the National Natural Science Foundation of China (Grant No.52004320)the Science Foundation of China University of Petroleum,Beijing (No.2462021QNXZ012,No.2462022BJRC001,and No.2462021YJRC012)the funding from the State Key Laboratory of Petroleum Resources and Engineering (No.PRP/indep-1-2103)。
文摘It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.