Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rat...Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.展开更多
The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we prev...The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we previously reported that Slit1–3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system,how this expression changes after injury has not been well studied.Herein,we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve.At 14 days after injury,quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1–3 and Robo1–2 in L4–5 spinal cord and dorsal root ganglia,as well as the sciatic nerve.Immunohistochemical analysis was performed to examine Slit1–3,Robo1–2,neurofilament heavy chain,F4/80,and vimentin in L4–5 spinal cord,L4 dorsal root ganglia,and the sciatic nerve.Co-expression of Slit1–3 and Robo1–2 in L4 dorsal root ganglia was detected by in situ hybridization.In addition,Slit1–3 and Robo1–2 protein expression in L4–5 spinal cord,L4 dorsal root ganglia,and sciatic nerve were detected by western blot assay.The results showed no significant changes of Slit1–3 or Robo1–2 mRNA expression in the spinal cord within 14 days after injury.In the dorsal root ganglion,Slit1–3 and Robo1–2 mRNA expression were initially downregulated within 4 days after injury;however,Robo1–2 mRNA expression returned to the control level,while Slit1–3 mRNA expression remained upregulated during regeneration from 4–14 days after injury.In the sciatic nerve,Slit1–3 and their receptors Robo1–2 were all expressed in the proximal nerve stump;however,Slit1,Slit2,and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury.Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury.Robo1 was upregulated in vimentin-positive cells and migrating Schwann cells inside the nerve bridge.Robo1 was also upregulated in Schwann cells of the distal nerve stump within 14 days after injury.Our findings indicate that Slit3 is the major ligand expressed in the nerve bridge and distal nerve stump during peripheral nerve regeneration,and Slit3/Robo signaling could play a key role in peripheral nerve repair after injury.This study was approved by Plymouth University Animal Welfare Ethical Review Board (approval No.30/3203) on April 12,2014.展开更多
目的:探讨电针对大鼠坐骨神经损伤后神经导向因子Slit1及其mRNA表达的影响。方法:将72只SD大鼠按随机数字表法分为正常组、模型组和治疗组,每组各24只。建立大鼠右坐骨神经横断后即刻端对端缝合模型。治疗组取"环跳"、"...目的:探讨电针对大鼠坐骨神经损伤后神经导向因子Slit1及其mRNA表达的影响。方法:将72只SD大鼠按随机数字表法分为正常组、模型组和治疗组,每组各24只。建立大鼠右坐骨神经横断后即刻端对端缝合模型。治疗组取"环跳"、"足三里"电针治疗,每日1次,7 d 1个疗程,连续3个疗程。每个疗程结束后以免疫组化法、RT-PCR法分别检测坐骨神经和相应脊髓段(L4-L6)Slit1及其mRNA的表达变化。结果:治疗组Slit1及其mRNA在第1疗程后达到高峰之后逐渐降低,显著高于模型组(P<0.01),且治疗组与模型组始终都显著高于正常组(P<0.01)。结论:电针治疗能明显增强损伤坐骨神经和相应脊髓段(L4-L6)中Slit1及其mRNA的表达,促进周围神经损伤再生修复。展开更多
基金supported by the National Natural Science Foundation of China(No.52175269)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52021003)+2 种基金Science and Technology Research Project of Education Department of Jilin Province(JJKH20231146KJ,JJKH20241262KJ)Project ZR2024ME104 supported by Shandong Provincial Natural Science FoundationChina Postdoctoral Science Foundation(No.2024M751086).
文摘Numerous arthropods evolve and optimize sensory systems, enabling them to effectively adapt complex and competitive habitats. Typically, scorpions can precisely perceive the prey location with the lowest metabolic rate among invertebrates. This biological phenomenon contrasts sharply with engineered systems, which generally associates high accuracy with substantial energy consumption. Inspired by the Scorpion Compound Slit Sensilla (SCSS) with a stress field modulation strategy, a bionic positioning sensor with superior precision and minimal power consumption is developed for the first time, which utilizes the particular Minimum Positioning Units (MPUs) to efficiently locate vibration signals. The single MPU of the SCSS can recognize the direction of collinear loads by regulating the stress field distribution and further, the coupling action of three MPUs can realize all-angle vibration monitoring in plane. Experiments demonstrate that the bionic positioning sensor achieves 1.43 degrees of angle-error-free accuracy without additional energy supply. As a proof of concept, two bionic positioning sensors and machine learning algorithm are integrated to provide centimeter (cm)-accuracy target localization, ideally suited for the man-machine interaction. The novel design offers a new mechanism for the design of traditional positioning devices, improving precision and efficiency in both the meta-universe and real-world Internet-connected systems.
基金supported by the National Natural Science Foundation of China,No.81371353(to XPD)
文摘The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we previously reported that Slit1–3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system,how this expression changes after injury has not been well studied.Herein,we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve.At 14 days after injury,quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1–3 and Robo1–2 in L4–5 spinal cord and dorsal root ganglia,as well as the sciatic nerve.Immunohistochemical analysis was performed to examine Slit1–3,Robo1–2,neurofilament heavy chain,F4/80,and vimentin in L4–5 spinal cord,L4 dorsal root ganglia,and the sciatic nerve.Co-expression of Slit1–3 and Robo1–2 in L4 dorsal root ganglia was detected by in situ hybridization.In addition,Slit1–3 and Robo1–2 protein expression in L4–5 spinal cord,L4 dorsal root ganglia,and sciatic nerve were detected by western blot assay.The results showed no significant changes of Slit1–3 or Robo1–2 mRNA expression in the spinal cord within 14 days after injury.In the dorsal root ganglion,Slit1–3 and Robo1–2 mRNA expression were initially downregulated within 4 days after injury;however,Robo1–2 mRNA expression returned to the control level,while Slit1–3 mRNA expression remained upregulated during regeneration from 4–14 days after injury.In the sciatic nerve,Slit1–3 and their receptors Robo1–2 were all expressed in the proximal nerve stump;however,Slit1,Slit2,and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury.Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury.Robo1 was upregulated in vimentin-positive cells and migrating Schwann cells inside the nerve bridge.Robo1 was also upregulated in Schwann cells of the distal nerve stump within 14 days after injury.Our findings indicate that Slit3 is the major ligand expressed in the nerve bridge and distal nerve stump during peripheral nerve regeneration,and Slit3/Robo signaling could play a key role in peripheral nerve repair after injury.This study was approved by Plymouth University Animal Welfare Ethical Review Board (approval No.30/3203) on April 12,2014.
基金supported by the National Basic Research Development Program(973)of China(No.2012CB114603)Special Fund of Shandong Province for High Level Overseas TalentsChina(No.72019)
文摘目的:探讨电针对大鼠坐骨神经损伤后神经导向因子Slit1及其mRNA表达的影响。方法:将72只SD大鼠按随机数字表法分为正常组、模型组和治疗组,每组各24只。建立大鼠右坐骨神经横断后即刻端对端缝合模型。治疗组取"环跳"、"足三里"电针治疗,每日1次,7 d 1个疗程,连续3个疗程。每个疗程结束后以免疫组化法、RT-PCR法分别检测坐骨神经和相应脊髓段(L4-L6)Slit1及其mRNA的表达变化。结果:治疗组Slit1及其mRNA在第1疗程后达到高峰之后逐渐降低,显著高于模型组(P<0.01),且治疗组与模型组始终都显著高于正常组(P<0.01)。结论:电针治疗能明显增强损伤坐骨神经和相应脊髓段(L4-L6)中Slit1及其mRNA的表达,促进周围神经损伤再生修复。