期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
An improved limit equilibrium method for rock slope stability analysis under stress-based calculation mode for slip surface
1
作者 DENG Dong-ping ZHANG Dian +1 位作者 PENG Yi-hang CHEN Hao-yu 《Journal of Central South University》 2025年第1期262-287,共26页
This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor ... This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion. 展开更多
关键词 stability of rock slope nonlinear GHB strength criterion limit equilibrium method stress function on slip surface stress constraint conditions at both ends of slip surface
在线阅读 下载PDF
Reliability analysis of slopes considering spatial variability of soil properties based on efficiently identified representative slip surfaces 被引量:16
2
作者 Bin Wang Leilei Liu +1 位作者 Yuehua Li Quan Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期642-655,共14页
Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper propose... Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature. 展开更多
关键词 Slope reliability analysis Spatial variability Representative slip surfaces(RSSs) Response surface method(RSM) Random field simulation
在线阅读 下载PDF
A Method Combining Numerical Analysis and Limit Equilibrium Theory to Determine Potential Slip Surfaces in Soil Slopes 被引量:6
3
作者 XIAO Shiguo YAN Liping CHENG Zhiqiang 《Journal of Mountain Science》 SCIE CSCD 2011年第5期718-727,共10页
This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any po... This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands. 展开更多
关键词 Soil slope Stress field Potential slip surface Slope stability Factor of safety Numerical analysis Limit equilibrium method ANSYS software
原文传递
A Simple Monte Carlo Method for Locating the Three-dimensional Critical Slip Surface of a Slope 被引量:6
4
作者 XIEMowen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第6期1258-1266,共9页
Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is a... Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher. 展开更多
关键词 three-dimensional slope stability Monte Carlo simulation critical slip surface
在线阅读 下载PDF
Imperialistic Competitive Algorithm:A metaheuristic algorithm for locating the critical slip surface in 2-Dimensional soil slopes 被引量:5
5
作者 Ali Reza Kashani Amir Hossein Gandomi Mehdi Mousavi 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期83-89,共7页
In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium ap... In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions. 展开更多
关键词 Meta-heuristic algorithms Morgen-stern and price method Non-circular slip surface Imperialistic competitive algorithm
在线阅读 下载PDF
Improved genetic algorithm freely searching for dangerous slip surface of slope 被引量:4
6
作者 万文 曹平 +1 位作者 冯涛 袁海平 《Journal of Central South University of Technology》 EI 2005年第6期749-752,共4页
Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of... Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm. 展开更多
关键词 slice method dangerous non-circular slip surface minimum safety factor improved genetic algorithm
在线阅读 下载PDF
Seismic stability analysis of slopes with pre-existing slip surfaces 被引量:2
7
作者 SU Li-jun SUN Chang-ning +1 位作者 YU Fang-wei ALI Sarfraz 《Journal of Mountain Science》 SCIE CSCD 2018年第6期1331-1341,共11页
In analyzing seismic stability of a slope with upper bound limit analysis method,the slip surface is often assumed as a log-spiral or plane slip surface.However,due to the presence of a weak layer and unfavorable geol... In analyzing seismic stability of a slope with upper bound limit analysis method,the slip surface is often assumed as a log-spiral or plane slip surface.However,due to the presence of a weak layer and unfavorable geological structural surface or a bedrock interface with overlying soft strata,the preexisting slip surface of the slope may be irregular and composed of a series of planes rather than strictly logspiral or plane shape.A computational model is developed for analyzing the seismic stability of slopes with pre-existing slip surfaces.This model is based on the upper bound limit analysis method and can consider the effect of anchor bolts.The soil or rock is deemed to follow the Mohr-Coulomb yield criterion.The slope is divided into multiple block elements along the slip surface.According to the displacement compatibility and the associated flow rule,a kinematic velocity field of the slope can be obtained computationally.The proposed model allows not only calculation of the rate of external work owing to the combined effect of self-weight and seismic loading,but also that of the energy dissipation rate caused by the slip surface,interfaces of block elements and anchorage effect of the anchors.Considering a direct relationship between the rate of external work and the energy dissipation rate,the expressions of yield acceleration and permanent displacement of anchored slopes can be derived.Finally,the validity of this proposed model is illustrated by analysis on three typical slopes.The results showed that the proposed model is more easily formulated and does not need to solve complex equations or time consuming iterations compared with previous methods based on the conditions of force equilibrium. 展开更多
关键词 Slope stability Pre-existing slip surface Seismic loading Limit analysis Yield acceleration Permanent displacement
原文传递
Evaluation of the possible slip surface of a highly heterogeneous rock slope using dynamic reduction method 被引量:2
8
作者 CHEN Guo-qing HUANG Run-qiu +3 位作者 ZHANG Feng-shou ZHU Zhen-fei SHI Yu-chuan WANG Jian-chao 《Journal of Mountain Science》 SCIE CSCD 2018年第3期672-684,共13页
A new method, the dynamic reduction method(DRM) combined with the strain-softening method, was applied to evaluate the possible slip surface of a highly heterogeneous rock slope of the Dagangshan hydropower station in... A new method, the dynamic reduction method(DRM) combined with the strain-softening method, was applied to evaluate the possible slip surface of a highly heterogeneous rock slope of the Dagangshan hydropower station in Southwest China.In DRM, only the strength of the failure elements is reduced and the softening reduction factor K is adopted to calculate the strength parameters. The simulation results calculated by DRM show that the further slip surface on the right slope of the Dagangshan hydropower station is limited in the middle part of the slope, while both SRM(strength reduction method) and LEM(limit equilibrium method) predict a failure surface which extends upper and longer. The observations and analysis from the three recorded sliding events indicate that the failure mode predicted by DRM is more likely the scenario.The results in this study illustrate that for highly heterogeneous slopes with geological discontinuities in different length scales, the proposed DRM can provide a reliable prediction of the location of the slip surface. 展开更多
关键词 Dynamic Reduction Method Strainsoftening Highly heterogeneous rock slope slip surface Geological discontinuity Hydropower station
原文传递
Multi-scale chemo-mechanical analysis of the slip surface of landslides in the Three Gorges, China 被引量:7
9
作者 ZHAO Yu CUI Peng +1 位作者 HU LiangBo Tomasz HUECKEL 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第7期1757-1765,共9页
Multi-scale chemo-mechanical effects and microscopic failure modes are explored in the evolution of strength change of slip surface. Direct shear equipments, scanning electro-microscope and X-ray diffraction are used ... Multi-scale chemo-mechanical effects and microscopic failure modes are explored in the evolution of strength change of slip surface. Direct shear equipments, scanning electro-microscope and X-ray diffraction are used to trace the change in strength of remodeled soils of slip surfaces in the Three Gorges area. Results show that there is a release of alkali metals and concentration of clay minerals on the surface. During the tests, potassium ions were released, the cementation was reduced, and the ratio of interlayer minerals varied associated with strength change. Accordingly, illites or montmorillonite-illite mixtures turned into montmorillonite. So the strength change originates from the release of alkali metal ions on molecular scale that leads to the concentration and transition of clay minerals on meso-scale. The evolution of slip surface and soil strength is a typical process involving multi-scale processes of structure changes and chemo-mechanical coupling. 展开更多
关键词 slip surface MULTI-SCALE chemo-mechanical evolution of mineral The Three Gorges China
原文传递
Features and genesis of micro-nanometer-sized grains on shear slip surface of the 2008 Wenchuan earthquake 被引量:7
10
作者 YUAN RenMao ZHANG BingLiang +3 位作者 XU XiWei LIN ChuanYong SI LanBing LI Xiao 《Science China Earth Sciences》 SCIE EI CAS 2014年第8期1961-1971,共11页
In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were ta... In coseismic surface rupture zones caused by the 2008 Mw 7.9 Wenchuan earthquake, some thin-layered fault gouges with strong deformation were observed in different locations. In this paper, fault gouge samples were taken as research objects from the Bajiaomiao village in the south-west segment of the principal rupture and the Heshangping village and the Shaba village in the north-east segment of the principal rupture where larger displacements were measured. Fabric characteristics of the fault gouge samples and the morphologies and structures of micro-nanometer grains on Y-shear surfaces were then analyzed by using a stereoscope and SEM. Observation results showed that obvious Y- and R-shears and obvious scratches were well developed in coseismic gouges caused by the 2008 Wenchuan earthquake. Micro-nanometer grains in the fault gouge of the Wenhcuan earthquake were formed mainly due to breaking, grinding, and powdering of fault slipping friction surface. Heat caused by fault slipping(maybe also including heat caused by thermal decomposition) played an important role in producing micro-nanometer sized grains. Existence occurrence state of micro-nanometer sized grains on fault slip surface includes singled grains and their complexes with shapes of ball, silkworm, pancake and mass. The structures mainly include dispersed and close-packed structures besides a few of striped and layered structures. All these structures were formed at the extreme unbalance conditions caused by rapid deforming during an earthquake. There always exist some voids between structures due to loosely contact. Only alienated grains are included in the stripped structure. But there are some singled grains with no deformation in dispersed and close-packed structures besides complexes of grains with morphologies of ball, silkworm, pancake and mass. The striped and close-packed structures are the results of plastic deformation, and the dispersed and layered structures are the results of brittle deformation whereas loose contact of different structures was caused mainly by discontinuous dynamic friction(fault stick-slipping). The structures of the micro-nanometer sized grains in coseismic fault gouge caused by the Wenchuan earthquake are the geological records of seismic fault slipping(it is not pseudotachylite), which could be used as an index of paleo-seismic events. 展开更多
关键词 Wenchuan earthquake fault slip surface micro-nanometer sized grains loose structure
原文传递
Determination of critical slip surface of fractured rock slopes based on fracture orientation data 被引量:6
11
作者 ZHANG Wen CHEN JianPing +3 位作者 ZHANG Wu L Yan MA YuFei XIONG Hui 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第5期1248-1256,共9页
The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this ... The critical slip surface of a fractured rock slope tends to extend along the fractures.Thus,fracture orientation plays a critical role in determining the critical slip surface.Based on fracture orientation data,this paper examines the critical slip surfaces of fractured rock slopes.Given that the surface of a fractured rock slope extends along the fracture surfaces,or the wedges,with each composed of two arbitrary fractures,the critical slip surface is determined via stochastic dynamics.In addition,a fracture frequency method is proposed as a means of analyzing the critical slip surface.According to this method,the critical slip surface slips in whichever direction has the lowest fracture frequency.Based on the stochastic dynamics method and the fracture frequency method,the critical slip surface of the slope is finally determined,that is,the critical slip surface takes the form of a plane passing the slope toe with a dip of 120° and a dip angle of 45°. 展开更多
关键词 fractured rock slope critical slip surface stochastic dynamics method fracture frequency method
原文传递
Determination of Slip Length in Couette Flow Based on an Analytical Simulation Incorporating Surface Interaction 被引量:1
12
作者 赵欣 魏超 苑士华 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第3期77-81,共5页
An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account o... An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achieve- ment of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment. 展开更多
关键词 MD Determination of slip Length in Couette Flow Based on an Analytical Simulation Incorporating surface Interaction
原文传递
Photo-responsive droplet manipulation slippery lubricant-infused porous surface with ultra-high durability
13
作者 刘泽志 张琛 +6 位作者 文通 李荟竹 高文萍 王新孔 赵伟 王凯歌 白晋涛 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期87-95,共9页
Photo-responsive slippery lubricant-infused porous surface(SLIPS) for droplet manipulation is flexible, noncontact and non-destructive in droplet manipulation, which has promising applications in flexible robotics, mi... Photo-responsive slippery lubricant-infused porous surface(SLIPS) for droplet manipulation is flexible, noncontact and non-destructive in droplet manipulation, which has promising applications in flexible robotics, microfluidics,biomedicine, and chemical analysis. However, the repeated manipulations for droplets of SLIPSs are quite limited in the works reported so far, the poor durability of droplet manipulation severely limits the practical application of the surfaces. In this paper, an Fe3O4-doped polydimethylsiloxane(PDMS)-based SLIPS is proposed and implemented to achieve ultra-high repeated droplet manipulation numbers under near-infrared ray(NIR) laser irradiation. Firstly, a micron columnar array structure with micro-pits on the top side, as well as, a wall structure out of the array is designed on SLIPS to reserve the lubricant. Secondly, the prototype of the SLIPS is fabricated by a 3-step ultraviolet(UV) lithography, and subsequently immersed in silicone oil for more than 96 h to obtain the ultra-high durability slippery lubricant-infused porous surface(UD-SLIPS). With a power of 25 m W–85 m W NIR laser, the repeated manipulation of microdroplets(≤ 5 μL) in the scale of 1 cm can exceed more than 3000 times which is far beyond that in previous reports. Finally, the droplet manipulation performance of this photo-responsive UD-SLIPS and the influence of infusion time on durability are investigated. The mechanism of the PDMS swelling effect is found to be the key factor in improving the droplet manipulation durability of SLIPS. The findings of this work would be of great significance for the development of highly durable photo-responsive functional surfaces for droplet manipulation. 展开更多
关键词 PHOTO-RESPONSIVE droplet manipulation slippery lubricant-infused porous surface(slipS) ultra-violet(UV)lithography
原文传递
Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity
14
作者 Tiegang Fang Fujun Wang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期54-58,共5页
The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be appl... The magnetohydrodynamic(MHD) flow induced by a stretching or shrinking sheet under slip conditions is studied.Analytical solutions based on the boundary layer assumption are obtained in a closed form and can be applied to a flow configuration with any arbitrary velocity distributions. Seven typical sheet velocity profiles are employed as illustrating examples. The solutions to the slip MHD flow are derived from the general solution and discussed in detail. Different from self-similar boundary layer flows, the flows studied in this work have solutions in explicit analytical forms. However, the current flows require special mass transfer at the wall, which is determined by the moving velocity of the sheet. The effects of the slip parameter, the mass transfer at the wall, and the magnetic field on the flow are also demonstrated. 展开更多
关键词 MHD Viscous slip MHD Flow over a Moving Sheet with an Arbitrary surface Velocity
原文传递
A Generalized Limit Equilibrium Method for the Solution of Active Earth Pressure on a Retaining Wall 被引量:11
15
作者 OUYANG Chao-jun XU Qiang +2 位作者 HE Si-ming LUO Yu WU Yong 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1018-1027,共10页
In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape wi... In this paper, a generalized limit equilibrium method of solving the active earth pressure problem behind a retaining wall is proposed.Differing from other limit equilibrium methods, an arbitrary slip surface shape without any assumptions of pre-defined shapes is needed in the current framework, which is verified to find the most probable failure slip surface. Based on the current computational framework, numerical comparisons with experiment, discrete element method and other methods are carried out. In addition, the influences of the inclination of the wall, the soil cohesion, the angle of the internal friction of the soil, the slope inclination of the backfill soil on the critical pressure coefficient of the soil, the point of application of the resultant earth pressure and the shape of the slip surface are also carefully investigated. The results demonstrate that limit equilibrium solution from predefined slip plane assumption, including Coulomb solution, is a special case of current computational framework. It is well illustrated that the current method is feasible to evaluate the characteristics of earth pressure problem. 展开更多
关键词 Limit equilibrium method Retainingwall Active earth pressure Critical slip surface
原文传递
Limit equilibrium analysis for rock slope stability using basic Hoek–Brown strength criterion 被引量:8
16
作者 邓东平 赵炼恒 李亮 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2154-2163,共10页
Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only sui... Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used. 展开更多
关键词 Hoek-Brown strength criterion linear equivalent Mohr-Coulomb strength parameters slope stability limit equilibrium slip surface factor of safety
在线阅读 下载PDF
Back analysis of general slope under earthquake forces using upper bound theorem 被引量:7
17
作者 孙志彬 梁桥 《Journal of Central South University》 SCIE EI CAS 2013年第11期3274-3281,共8页
Long time monitoring is acquired to obtain the displacement data for displacement-based geotechnical material back analysis, and these data are hard to be measured under some special condition, such as earthquake. For... Long time monitoring is acquired to obtain the displacement data for displacement-based geotechnical material back analysis, and these data are hard to be measured under some special condition, such as earthquake. For a simple homogeneous slope, the position of a critical failure surface is determined by value of c/tan ~b. Utilizing upper bound theorem of limit analysis, the external work rate and internal energy for normal slope under earthquake forces are given, and the formula for minimum safety factor is derived. On this basis, the equation of slip surface and the surface depth of a given position are solved. In this way, the strength parameter can be analyzed by known slip surface depth. For practical use, the surface depth for a given slope under varying strength parameter is presented. Finally, two examples are given to show its simplicity and effectiveness. 展开更多
关键词 back analysis limit analysis critical slip surface earthquake force
在线阅读 下载PDF
Study on embedded length of piles for slope reinforced with one row of piles 被引量:6
18
作者 Shikou Yang, Xuhua Ren, Jixun Zhang College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第2期167-178,共12页
The embedded length of anti-slide piles for slope is analyzed by three-dimensional elastoplastic shear strength reduction method. The effect of embedded pile length on the factor of safety and pile behavior is analyze... The embedded length of anti-slide piles for slope is analyzed by three-dimensional elastoplastic shear strength reduction method. The effect of embedded pile length on the factor of safety and pile behavior is analyzed. Furthermore, the effects of pile spacing, pile head conditions, pile bending stiffness and soil properties on length and behavior of pile are also analyzed. The results show that the pile spacing and the pile head conditions have significant influences on the critical embedded length of pile. It is found that the critical embedded length of pile, beyond which the factor of safety does not increase, increases with the decrease in pile spacing. The smaller the pile spacing is, the larger the integrity of the reinforced slope will be. A theoretical analysis of the slip surface is also conducted, and the slip surface determined by the pressure on piles, considering the influences of both soil and piles for slope, is in agreement with the ones in previous studies. 展开更多
关键词 slope stability factor of safety embedded pile length strength reduction method slip surface
在线阅读 下载PDF
Limit equilibrium stability analysis of slopes under external loads 被引量:5
19
作者 DENG Dong-ping ZHAO Lian-heng LI Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2382-2396,共15页
Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip su... Two calculation modes for the effect of external load on slope stability, i.e., mode I in which the external load is thought to act on slope surface, and mode II in which the external load is thought to act on slip surface along the force action line, were considered. Meanwhile, four basic distribution patterns of external load were used, of which complex external loads could be composed. In analysis process, several limit equilibrium methods, such as Swedish method, simplified Bishop method, simplified Janbu method, Spencer method, Morgenstern-Price(M-P) method, Sarma method, and unbalanced thrust method, were also adopted to contrast their differences in slope stability under the external load. According to parametric analysis, some conclusions can be obtained as follows:(1) The external load, with the large magnitude, small inclination angle, and acting position close to the slope toe,has more positive effect on slope stability;(2) The results calculated using modes I and II of external load are similar, indicating that the calculation mode of external load has little influence on slope stability;(3) If different patterns of external loads are equivalent to each other, their slope stability under these external loads are the same, and if not, the external load leads to the better slope stability,as action position of the resultant force for external load is closer to the lower sliding point of slip surface. 展开更多
关键词 slope stability calculation mode of external load distribution pattern of external load limit equilibrium slip surface factor of safety (FOS)
在线阅读 下载PDF
Time history of seismic earth pressure response from gravity retaining wall based on energy dissipation 被引量:2
20
作者 QU Hong-lue DENG Yuan-yuan +2 位作者 GAO Ya-nan HUANG Xue ZHANG Zhe 《Journal of Mountain Science》 SCIE CSCD 2022年第2期578-590,共13页
The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave prop... The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history. 展开更多
关键词 Energy dissipation Time history of seismic earth pressure response slip surface curve Gravity retaining wall Shaking table test
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部