Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor fa...Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor factors given by a slip’ model,the better prediction obtained based on the model.From this point of view,a composed slip model of BCC metals was presented.Based on the model,the agreement of predicted r values for deep drawing steels with experimental ones is excellent.展开更多
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
用为 8 h 的测量 GPS 的 coseismic 和 seismic 以后排水量跟随 M w 2011 年 3 月 11 日, coseismic 和 seismic 以后差错的 9.0 仙台地震滑动模型基于一个分层的外壳的模型被开发。主要吃惊的测地学的时刻大小是被测量近似 M w 8.98。...用为 8 h 的测量 GPS 的 coseismic 和 seismic 以后排水量跟随 M w 2011 年 3 月 11 日, coseismic 和 seismic 以后差错的 9.0 仙台地震滑动模型基于一个分层的外壳的模型被开发。主要吃惊的测地学的时刻大小是被测量近似 M w 8.98。slip 展出清楚的反向的特征,与大约 23.3 m 的 hypocenter,和大小附近的最大值。某罢工滑倒行为可以发生在山峰破裂地区的二个方面上。主要吃惊释放的几乎 90% 地震时刻发生在深度不到 40 km。精力由差错释放了在跟随主要吃惊的 8 h 滑倒近似等于 M w 的地震 8.13。与 1.5 m 的最大值, seismic 以后滑倒在 coseismic 破裂差错的西南的部分被集中,它与 M w 的地点和行为同意很好 7.9 余震。这暗示在在主要吃惊以后的 8 h 的 seismic 以后变丑被 M w 主要导致 7.9 余震。另外, seismic 以后 0.20.4 m 滑倒在 coseismic 破裂的下面剧降延期被观察,它可能被在滑倒以后的效果在这个时期期间引起了。展开更多
Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layere...Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.展开更多
In this paper, the low Mach number he- lium and nitrogen flows in micro-channels are inves- tigated numerically with variations of inlet to outlet pressure ratios, aspect ratios, out pressures and fluid mediums by usi...In this paper, the low Mach number he- lium and nitrogen flows in micro-channels are inves- tigated numerically with variations of inlet to outlet pressure ratios, aspect ratios, out pressures and fluid mediums by using different continuum-based slip models. Theoretical solutions based on perturbation expansions of the Navier-Stokes equations have been developed under different order slip conditions. The validity of slip models has been examined by the corresponding experiments and the DSMC method at different Knudsen numbers. Simulations have shown good predictions of the compressibility, rarefaction and thermal creep effects on micro-channel flows with the present slip models. The higher order slip models relatively decrease the rarefaction effects comparing with a first-order slip model. Both of the Knudsen number and the Reynolds number have been identified as key parameters, which govern the rarefaction effects and thermal creep effects, respec- tively. The present slip models have been also dem- onstrated to be appropriate for micro-channel nitro- gen flows with the Knudsen number less than 0.15, and the higher order slip conditions improve the Na- vier-Stokes predictions in the slip flow regime with Kn<0.08. However, the continuum-based slip models significantly under-predict the rarefaction effects in the transitional flow regime as the Knudsen number exceeds 0.2.展开更多
A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free en...A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.展开更多
In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to per...In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to perceive this phenomena clot model is considered. To discuss this analysis mathematical model is formed in the presence of the effective thermal conductivity and variable viscosity of base fluid. Appropriate slip conditions are employed to obtain the close form solutions of temperature and velocity profile. The graphical illustrations have been presented for the assessment of pressure rise, pressure gradient and velocity profile. The effects of several parameters on the flow quantities for theoretical observation are investigated. At the end, the results confirmed that the impulsion of copper and silver nanoparticles as drug agent enlarges the amplitude of the velocity and hence nanoparticles play an important role in engineering and biomedical applications such as drug delivery system.展开更多
With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal ...With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal sapphire stands out as a promising material for microelectronic components,ultra-precision lenses,and semiconductor structures owing to its exceptional characteristics,such as high hardness,chemical stability,and optical properties.This paper focuses on understanding the mechanism responsible for generating anisotropic crack morphologies along various cutting orientations on four crystal planes(C-,R-,A-,and M-planes)of sapphire during ultra-precision orthogonal cutting.By employing a scanning electric microscope to examine the machined surfaces,the crack morphologies can be categorized into three distinct types on the basis of their distinctive features:layered,sculptured,and lateral.To understand the mechanism determining crack morphology,visualized parameters related to the plastic deformation and cleavage fracture parameters are utilized.These parameters provide insight into both the likelihood and direction of plastic deformation and fracture system activations.Analysis of the results shows that the formation of crack morphology is predominantly influenced by the directionality of crystallographic fracture system activation and by the interplay between fracture and plastic deformation system activations.展开更多
The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths a...The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.展开更多
The peristaltic ttow of nanofluids is a relatively new area of research. Scientists are of the opinion that the no-slip conditions at the boundaries are no longer valid and consequently, the first and the second order...The peristaltic ttow of nanofluids is a relatively new area of research. Scientists are of the opinion that the no-slip conditions at the boundaries are no longer valid and consequently, the first and the second order slip conditions should be addressed. In this paper, the effects of slip conditions and the convective boundary conditions at the boundary walls on the peristaltic flow of a viscous nanofluid are investigated for. Also, the exact analytical solutions are obtained for the model. The obtained results are presented through graphs and discussed. The results reveal that the two slip parameters have strong effects on the temperature and the nanoparticles volume fraction profiles. Moreover, it has been seen that the temperature and nanoparticles volume fraction profiles attain certain values when the first slip condition exceeds a specified value. However, no limit value for the second slip parameter has been detected. Further, the effects of the various emerging parameters on the flow and heat transfer characteristics have been presented.展开更多
In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equat...In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.展开更多
We propose a boundary scheme for addressing multi-mechanism flow in a porous medium in slip and early transition flow regimes, which is frequently encountered in shale gas reservoirs. Micro-gaseous flow in organic-ric...We propose a boundary scheme for addressing multi-mechanism flow in a porous medium in slip and early transition flow regimes, which is frequently encountered in shale gas reservoirs. Micro-gaseous flow in organic-rich shale involves a complex flow mechanism. A self-developed boundary scheme that combines the non-equilibrium extrapolation scheme and the combined diffusive reflection and bounce-back scheme(half-way DBB) to embed the Langmuir slip boundary into the single-relaxation-time lattice Boltzmann method(SRT-LBM) enables us to describe this process, namely, the coupling effect of micro-gaseous flow and surface diffusion in organic-rich nanoscale pores. The present LBM model comes with the careful consideration of the local Knudsen number, local pressure gradient, viscosity correction model, and regularization procedure to account for the rarefied gas flows in irregular pores. Its validity and accuracy are verified by several benchmarking cases, and the calculated results by this boundary scheme accord well with our analytical solutions.This boundary scheme shows a higher accuracy than the existing studies. Additionally, a subiteration strategy is presented to tackle the coupled micro-gaseous flow and surface diffusion, which necessitates the iteration process matching of these two mechanisms. The multi-mechanism flow in the self-developed irregular pores is also numerically investigated and analyzed over a wide range of parameters. The results indicate that the present model can effectively capture the coupling effect of micro-gaseous flow and surface diffusion in a tree-like porous medium.展开更多
The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approach...The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.展开更多
Ten specimens were tested in this paper in order to study the bond behavior and the process of force transfer when bars adhered to mortar. The development of the bond stress between bars and mortar was calculated. Tes...Ten specimens were tested in this paper in order to study the bond behavior and the process of force transfer when bars adhered to mortar. The development of the bond stress between bars and mortar was calculated. Test results show that the maximum bond-stress is not influenced by the bar bond length and increases as the increased splitting strength of mortar for block. The local bond stress-slip curve was obtained. Then,based on the regressive analysis of test data,two bond shearing stress-slip constitutive models between bars and mortar were proposed. The models can be used in the numerical simulation or finite element analysis and provide references for the improvement of the corresponding design codes.展开更多
文摘Different slip models were used for prediction of r value of BCC metal sheets from ODF coefficients.According to the maximum plastic work theory developed by Bishop and Hill,it is expected that the higher of Taylor factors given by a slip’ model,the better prediction obtained based on the model.From this point of view,a composed slip model of BCC metals was presented.Based on the model,the agreement of predicted r values for deep drawing steels with experimental ones is excellent.
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
基金supported by the Knowledge Innovation Key Program of the Chinese Academy of Sciences (KZCX2-SW-142)the National Natural Science Foundation of China (41021003, 40974034 and 90814009)the Key Project of Earthquake Science (201008007)
文摘用为 8 h 的测量 GPS 的 coseismic 和 seismic 以后排水量跟随 M w 2011 年 3 月 11 日, coseismic 和 seismic 以后差错的 9.0 仙台地震滑动模型基于一个分层的外壳的模型被开发。主要吃惊的测地学的时刻大小是被测量近似 M w 8.98。slip 展出清楚的反向的特征,与大约 23.3 m 的 hypocenter,和大小附近的最大值。某罢工滑倒行为可以发生在山峰破裂地区的二个方面上。主要吃惊释放的几乎 90% 地震时刻发生在深度不到 40 km。精力由差错释放了在跟随主要吃惊的 8 h 滑倒近似等于 M w 的地震 8.13。与 1.5 m 的最大值, seismic 以后滑倒在 coseismic 破裂差错的西南的部分被集中,它与 M w 的地点和行为同意很好 7.9 余震。这暗示在在主要吃惊以后的 8 h 的 seismic 以后变丑被 M w 主要导致 7.9 余震。另外, seismic 以后 0.20.4 m 滑倒在 coseismic 破裂的下面剧降延期被观察,它可能被在滑倒以后的效果在这个时期期间引起了。
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-SW-142)the National Natural Science Foundation of China (41021003, 40974034 and90814009)the Key Project of Earthquake Science (201008007)
文摘Based on co-seismic displacements recorded by terrestrial GPS stations and seafloor GPS/acoustic stations, the static slip model of the 2011 Mw 9.0 Tohoku earthquake was determined by inverting the data using a layered earth model. According to a priori information, the rupture surface was modeled with a geometry that is close to the actual rupture, in which the fault dip angle increases with depth and the fault strike varies with the trend of the trench. As shown by the results inferred from the joint inversion, the "geodetic" moment is 3.68 × 10 22 Nm, corresponding to Mw 9.01, and the maximum slip is positioned at a depth of 13.5 km with a slip magnitude of 45.8 m. Rupture asperities with slip exceeding 10 m are mainly distributed from 39.6 to 36.97°N, over a length of almost 240 km along the trench. The slip was mostly concentrated at depths shallower than 40 km, up-dip of the hypocenter. "Checkerboard" tests reveal that a joint inversion of multiple datasets can resolve the slip distribution better than an inversion with terrestrial GPS data only-especially when aiming to resolve slip at shallow depths. Thus, the joint inversion results obtained by this work may provide a more reliable slip model than the results of other studies that are only derived from terrestrial GPS data or seismic waveform data.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 50376060 and 10372099).
文摘In this paper, the low Mach number he- lium and nitrogen flows in micro-channels are inves- tigated numerically with variations of inlet to outlet pressure ratios, aspect ratios, out pressures and fluid mediums by using different continuum-based slip models. Theoretical solutions based on perturbation expansions of the Navier-Stokes equations have been developed under different order slip conditions. The validity of slip models has been examined by the corresponding experiments and the DSMC method at different Knudsen numbers. Simulations have shown good predictions of the compressibility, rarefaction and thermal creep effects on micro-channel flows with the present slip models. The higher order slip models relatively decrease the rarefaction effects comparing with a first-order slip model. Both of the Knudsen number and the Reynolds number have been identified as key parameters, which govern the rarefaction effects and thermal creep effects, respec- tively. The present slip models have been also dem- onstrated to be appropriate for micro-channel nitro- gen flows with the Knudsen number less than 0.15, and the higher order slip conditions improve the Na- vier-Stokes predictions in the slip flow regime with Kn<0.08. However, the continuum-based slip models significantly under-predict the rarefaction effects in the transitional flow regime as the Knudsen number exceeds 0.2.
基金Project supported by the National Natural Science Foundation of China(Nos.11272237 and11502131)the Natural Science Foundation of Fujian Province(No.2016J05019)the Foundation of the Higher Education Institutions of Fujian Education Department for Distinguished Young Scholar(No.[2016]23)
文摘A polymeric gel is an aggregate of polymers and solvent molecules, which can retain its shape after a large deformation. The deformation behavior of polymeric gels was often described based on the Flory-Rehner free energy function without considering the influence of chain entanglements on the mechanical behavior of gels. In this paper,a new hybrid free energy function for gels is formulated by combining the EdwardsVilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent concurrent process of large deformation and mass transport. The finite element method is developed to analyze examples of swelling-induced deformation. Simulation results are compared with available experimental data and show good agreement. The influence of entanglements on the time-dependent deformation behavior of gels is also demonstrated.The study of large deformation kinetics of polymeric gel is useful for diverse applications.
基金the Higher Education Commission, Pakistan (HEC) for the financial support to complete this work under the research Grant No. 6170/Federal/NRPU/R&D/HEC/2016
文摘In this speculative analysis, our main focused is to address the neurotic condition that occurs due to accumulation of blood components on the wall of the artery that results in blood coagulation. Specifically, to perceive this phenomena clot model is considered. To discuss this analysis mathematical model is formed in the presence of the effective thermal conductivity and variable viscosity of base fluid. Appropriate slip conditions are employed to obtain the close form solutions of temperature and velocity profile. The graphical illustrations have been presented for the assessment of pressure rise, pressure gradient and velocity profile. The effects of several parameters on the flow quantities for theoretical observation are investigated. At the end, the results confirmed that the impulsion of copper and silver nanoparticles as drug agent enlarges the amplitude of the velocity and hence nanoparticles play an important role in engineering and biomedical applications such as drug delivery system.
基金supported by the National Science Foundation under Grant No.CMMI-1844821supported by the NSF through the University of Wisconsin Materials Research Science Center(Grant No.DMR-1720415).
文摘With the growing demand for the fabrication of microminiaturized components,a comprehensive understanding of material removal behavior during ultra-precision cutting has become increasingly significant.Single-crystal sapphire stands out as a promising material for microelectronic components,ultra-precision lenses,and semiconductor structures owing to its exceptional characteristics,such as high hardness,chemical stability,and optical properties.This paper focuses on understanding the mechanism responsible for generating anisotropic crack morphologies along various cutting orientations on four crystal planes(C-,R-,A-,and M-planes)of sapphire during ultra-precision orthogonal cutting.By employing a scanning electric microscope to examine the machined surfaces,the crack morphologies can be categorized into three distinct types on the basis of their distinctive features:layered,sculptured,and lateral.To understand the mechanism determining crack morphology,visualized parameters related to the plastic deformation and cleavage fracture parameters are utilized.These parameters provide insight into both the likelihood and direction of plastic deformation and fracture system activations.Analysis of the results shows that the formation of crack morphology is predominantly influenced by the directionality of crystallographic fracture system activation and by the interplay between fracture and plastic deformation system activations.
基金sponsored by the Norwegian Public Roads Administration(NPRA)
文摘The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.
文摘The peristaltic ttow of nanofluids is a relatively new area of research. Scientists are of the opinion that the no-slip conditions at the boundaries are no longer valid and consequently, the first and the second order slip conditions should be addressed. In this paper, the effects of slip conditions and the convective boundary conditions at the boundary walls on the peristaltic flow of a viscous nanofluid are investigated for. Also, the exact analytical solutions are obtained for the model. The obtained results are presented through graphs and discussed. The results reveal that the two slip parameters have strong effects on the temperature and the nanoparticles volume fraction profiles. Moreover, it has been seen that the temperature and nanoparticles volume fraction profiles attain certain values when the first slip condition exceeds a specified value. However, no limit value for the second slip parameter has been detected. Further, the effects of the various emerging parameters on the flow and heat transfer characteristics have been presented.
基金Project supported by the National Natural Science Foundation of China(Nos.11102102 and 91130017)the Independent Innovation Foundation of Shandong University(No.2013ZRYQ002)
文摘In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.
基金supported by the Strategic Program of Chinese Academy of Sciences(Grant No.XDB10030400)the Hundred Talent Program of Chinese Academy of Sciences(Grant No.Y323081C01)the National Natural Science Foundation of China(Grant No.51439008)
文摘We propose a boundary scheme for addressing multi-mechanism flow in a porous medium in slip and early transition flow regimes, which is frequently encountered in shale gas reservoirs. Micro-gaseous flow in organic-rich shale involves a complex flow mechanism. A self-developed boundary scheme that combines the non-equilibrium extrapolation scheme and the combined diffusive reflection and bounce-back scheme(half-way DBB) to embed the Langmuir slip boundary into the single-relaxation-time lattice Boltzmann method(SRT-LBM) enables us to describe this process, namely, the coupling effect of micro-gaseous flow and surface diffusion in organic-rich nanoscale pores. The present LBM model comes with the careful consideration of the local Knudsen number, local pressure gradient, viscosity correction model, and regularization procedure to account for the rarefied gas flows in irregular pores. Its validity and accuracy are verified by several benchmarking cases, and the calculated results by this boundary scheme accord well with our analytical solutions.This boundary scheme shows a higher accuracy than the existing studies. Additionally, a subiteration strategy is presented to tackle the coupled micro-gaseous flow and surface diffusion, which necessitates the iteration process matching of these two mechanisms. The multi-mechanism flow in the self-developed irregular pores is also numerically investigated and analyzed over a wide range of parameters. The results indicate that the present model can effectively capture the coupling effect of micro-gaseous flow and surface diffusion in a tree-like porous medium.
基金supported by National Key Research and Development Plan of China (No. 2018YFF01014204)"Fundamental Research Program of China (No. 2015CB057906)"
文摘The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.
基金Sponsored by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of China(Grant No. 2009BAK58B03-03 and 2006BAJ03A01-05)the Key Laboratory of Structural Engineering of Shenyang Jianzhu University,China(Grant No. JG200705)the Science & Re-search Program of Shenyang,China(Grant No. 1091064-A-00)
文摘Ten specimens were tested in this paper in order to study the bond behavior and the process of force transfer when bars adhered to mortar. The development of the bond stress between bars and mortar was calculated. Test results show that the maximum bond-stress is not influenced by the bar bond length and increases as the increased splitting strength of mortar for block. The local bond stress-slip curve was obtained. Then,based on the regressive analysis of test data,two bond shearing stress-slip constitutive models between bars and mortar were proposed. The models can be used in the numerical simulation or finite element analysis and provide references for the improvement of the corresponding design codes.