期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
IBMSMA: An Indicator-based Multi-swarm Slime Mould Algorithm for Multi-objective Truss Optimization Problems 被引量:2
1
作者 Shihong Yin Qifang Luo Yongquan Zhou 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1333-1360,共28页
This work proposes an improved multi-objective slime mould algorithm, called IBMSMA, for solving the multi-objective truss optimization problem. In IBMSMA, the chaotic grouping mechanism and dynamic regrouping strateg... This work proposes an improved multi-objective slime mould algorithm, called IBMSMA, for solving the multi-objective truss optimization problem. In IBMSMA, the chaotic grouping mechanism and dynamic regrouping strategy are employed to improve population diversity;the shift density estimation is used to assess the superiority of search agents and to provide selection pressure for population evolution;and the Pareto external archive is utilized to maintain the convergence and distribution of the non-dominated solution set. To evaluate the performance of IBMSMA, it is applied to eight multi-objective truss optimization problems. The results obtained by IBMSMA are compared with other 14 well-known optimization algorithms on hypervolume, inverted generational distance and spacing-to-extent indicators. The Wilcoxon statistical test and Friedman ranking are used for statistical analysis. The results of this study reveal that IBMSMA can find the Pareto front with better convergence and diversity in less time than state-of-the-art algorithms, demonstrating its capability in tackling large-scale engineering design problems. 展开更多
关键词 slime mould algorithm Shift-based density estimation Multi-swarm strategy Multi-objective optimization Truss optimization
在线阅读 下载PDF
Multi-objective process parameter optimization for energy saving in injection molding process 被引量:4
2
作者 Ning-yun LU Gui-xia GONG +1 位作者 Yi YANG Jian-hua LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第5期382-394,共13页
This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of vari... This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements. 展开更多
关键词 Injection molding process Energy saving Multi-objective optimization Genetic algorithm Lexicographic method
原文传递
A Novel Variable-Fidelity Kriging Surrogate Model Based on Global Optimization for Black-Box Problems
3
作者 Yi Guan Pengpeng Zhi Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 2025年第9期3343-3368,共26页
Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challen... Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challenge to building a VF model is devising an adaptive model updating strategy that jointly selects additional low-fidelity(LF)and/or HF samples.The additional samples must enhance the model accuracy while maximizing the computational efficiency.We propose ISMA-VFEEI,a global optimization framework that integrates an Improved Slime-Mould Algorithm(ISMA)and a Variable-Fidelity Expected Extension Improvement(VFEEI)learning function to construct a VF surrogate model efficiently.First,A cost-aware VFEEI function guides the adaptive LF/HF sampling by explicitly incorporating evaluation cost and existing sample proximity.Second,ISMA is employed to solve the resulting non-convex optimization problem and identify global optimal infill points for model enhancement.The efficacy of ISMA-VFEEI is demonstrated through six numerical benchmarks and one real-world engineering case study.The engineering case study of a high-speed railway Electric Multiple Unit(EMU),the optimization objective of a sanding device attained a minimum value of 1.546 using only 20 HF evaluations,outperforming all the compared methods. 展开更多
关键词 Global optimization KRIGING variable-fidelity model slime mould algorithm expected improvement
在线阅读 下载PDF
Optimization strategy in end milling process for high speed machining of hardened die/mold steel
4
作者 Ying Tang 《Journal of University of Science and Technology Beijing》 CSCD 2006年第3期240-243,共4页
An optimization strategy for high speed machining of hardened die/mold steel based on machining feature analysis was studied. It is a further extension of the previously presented study on the thermal mechanism of end... An optimization strategy for high speed machining of hardened die/mold steel based on machining feature analysis was studied. It is a further extension of the previously presented study on the thermal mechanism of end milling and constant cutting force control. An objective function concerning machining cost and associated optimization algorithm based on machining time and cutting length calculation was proposed. Constraints to satisfy specific machining strategies when high speed machining the hardened die/mold steel, trochoid tool path pattern in slot end milling to avoid over-heat and feed rate adaptation to avoid over-load, were also discussed. As a case study, the tool selection problem when machining a die part with multiple machining features was investigated. 展开更多
关键词 optimization algorithm hardened die/mold steel machining cost machining feature
在线阅读 下载PDF
Intelligent Slime Mould Optimization with Deep Learning Enabled Traffic Prediction in Smart Cities
5
作者 Manar Ahmed Hamza Hadeel Alsolai +5 位作者 Jaber S.Alzahrani Mohammad Alamgeer Mohamed Mahmoud Sayed Abu Sarwar Zamani Ishfaq Yaseen Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2022年第12期6563-6577,共15页
Intelligent Transportation System(ITS)is one of the revolutionary technologies in smart cities that helps in reducing traffic congestion and enhancing traffic quality.With the help of big data and communication techno... Intelligent Transportation System(ITS)is one of the revolutionary technologies in smart cities that helps in reducing traffic congestion and enhancing traffic quality.With the help of big data and communication technologies,ITS offers real-time investigation and highly-effective traffic management.Traffic Flow Prediction(TFP)is a vital element in smart city management and is used to forecast the upcoming traffic conditions on transportation network based on past data.Neural Network(NN)and Machine Learning(ML)models are widely utilized in resolving real-time issues since these methods are capable of dealing with adaptive data over a period of time.Deep Learning(DL)is a kind of ML technique which yields effective performance on data classification and prediction tasks.With this motivation,the current study introduces a novel Slime Mould Optimization(SMO)model with Bidirectional Gated Recurrent Unit(BiGRU)model for Traffic Prediction(SMOBGRU-TP)in smart cities.Initially,data preprocessing is performed to normalize the input data in the range of[0,1]using minmax normalization approach.Besides,BiGRUmodel is employed for effective forecasting of traffic in smart cities.Moreover,the novelty of the work lies in using SMO algorithm to effectively adjust the hyperparameters of BiGRU method.The proposed SMOBGRU-TP model was experimentally validated and the simulation results established the model’s superior performance in terms of prediction compared to existing techniques. 展开更多
关键词 Smart cities traffic flow prediction slime mould optimization algorithm deep learning intelligent models
在线阅读 下载PDF
Boosting Kernel Search Optimizer with Slime Mould Foraging Behavior for Combined Economic Emission Dispatch Problems 被引量:2
6
作者 Ruyi Dong Lixun Sun +3 位作者 Long Ma Ali Asghar Heidari Xinsen Zhou Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2863-2895,共33页
Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the... Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the combined economic emission dispatch(CEED)problem.Inspired by the foraging behavior in the slime mould algorithm(SMA),the kernel matrix of the kernel search optimizer(KSO)is intensified.The proposed BKSO is superior to the standard KSO in terms of exploitation ability,robustness,and convergence rate.The CEC2013 test function is used to assess the improved KSO's performance and compared to 11 well-known optimization algorithms.BKSO performs better in statistical results and convergence curves.At the same time,BKSO achieves better fuel costs and fewer pollution emissions by testing with four real CEED cases,and the Pareto solution obtained is also better than other MAs.Based on the experimental results,BKSO has better performance than other comparable MAs and can provide more economical,robust,and cleaner solutions to CEED problems. 展开更多
关键词 Combined economic emission dispatch Kernel search optimization slime mould algorithm Valve point effect Greenhouse gases
在线阅读 下载PDF
An Improved Elite Slime Mould Algorithm for Engineering Design 被引量:1
7
作者 Li Yuan Jianping Ji +3 位作者 Xuegong Liu Tong Liu Huiling Chen Deng Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期415-454,共40页
The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial perform... The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results. 展开更多
关键词 slime mould algorithm metaheuristic algorithm continuous optimization chaos random strategy engineering design
在线阅读 下载PDF
A Multi-objective Optimal Approach to Automated Construction of Sacrificial Multi-piece Molds
8
作者 王会凤 周雄辉 陈巍 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第5期542-546,共5页
Sacrificial multi-piece molds can be used for producing complex parts. To obtain the optimal design of molds automatically, a multi-objective optimal approach is proposed. Mold pieces number, material utilization and ... Sacrificial multi-piece molds can be used for producing complex parts. To obtain the optimal design of molds automatically, a multi-objective optimal approach is proposed. Mold pieces number, material utilization and partitioning area are taken as the objective functions, and the machinability of each mold piece is taken as constraint condition. Genetic algorithm (GA) is adopted to realize global optimization of partitioning process. Each mold piece in optimal scheme can be manufactured by milling and drilling operations, which reduce the tooling cost and shorten product cycle obviously. Using the proposed approach, mold design can be significantly automated for making complex parts. 展开更多
关键词 sacrificial multi-piece molds multi-objective optimization MACHINABILITY genetic algorithm (GA)
原文传递
A hybrid genetic slime mould algorithm for parameter optimization of field-road trajectory segmentation models 被引量:1
9
作者 Jiawen Pan Caicong Wu Weixin Zhai 《Information Processing in Agriculture》 CSCD 2024年第4期590-602,共13页
Field-road trajectory segmentation(FRTS)is a critical step in the processing of agricultural machinery trajectory data.This study presents a generalized optimization framework based on metaheuristic algorithms(MAs)to ... Field-road trajectory segmentation(FRTS)is a critical step in the processing of agricultural machinery trajectory data.This study presents a generalized optimization framework based on metaheuristic algorithms(MAs)to increase the accuracy of the field-road trajectory segmentation model.The MA optimization process is used in this framework to precisely and quickly identify the parameters of the FRTS model.It is difficult to solve the parameter optimization problem with basic metaheuristic algorithms without falling into local optima due to their insufficient performance.This study therefore combines a genetic algorithm(GA)with a slime mould algorithm(SMA)to propose a novel enhanced hybrid algorithm(GASMA);the algorithm has superior global search capability due to the implicit parallelism of the GA,and the oscillation concentration mechanism of the SMA is used to enhance the algorithm’s local search capability.To maintain the balance between the two capacities,a nonlinear parameter management technique is developed that adaptively modifies the algorithm’s computational process based on the fitness distribution deviation of the population.Experiments were conducted on real agricultural trajectory datasets with various sample frequencies,and the proposed algorithm was compared with existing methods to validate its efficiency.According to the experimental data,the optimized model produced better results.The proposed approach provides an automatic and accurate method for determining the optimal parameter configurations of FRTS model instances,where the parameter optimization solution is not confined to a single specified procedure and can be addressed by a variety of metaheuristic algorithms. 展开更多
关键词 Field-road segmentation Parameter optimization Metaheuristic algorithm Genetic algorithm slime mould algorithm
原文传递
Realization of an optimized cylindrical uniform magnetic field coil via flexible printed circuit technology
10
作者 A-Hui Zhao Yong-Le Zhang +5 位作者 Yue-Yue Liang Yi Zhang Jun-Jun Zha Dao-Rong Rui Xiao-Qiang Zhang Kang Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期242-248,共7页
The design and fabrication method of magnetic field coils with high uniformity is essential for atomic magnetometers.In this paper,a novel design strategy for cylindrical uniform coils is first proposed,which combines... The design and fabrication method of magnetic field coils with high uniformity is essential for atomic magnetometers.In this paper,a novel design strategy for cylindrical uniform coils is first proposed,which combines the target-field method(TFM)with an optimized slime mold algorithm(SMA)to determine optimal structure parameters.Then,the realization method for the designed cylindrical coil by using the flexible printed circuit(FPC)technology is presented.Compared with traditional fabrication methods,this method has advantages in excellent flexibility and bending property,making the coils easier to be arranged in limited space.Moreover,the manufacturing process of the FPC technology via a specific cylindrical uniform magnetic field coil is discussed in detail,and the successfully realized coil is well tested in a verification system.By comparing the uniformity performance of the experimental coil with the simulation one,the effectiveness of the FPC technology in producing cylindrical coils has been well validated. 展开更多
关键词 uniform magnetic field coil optimized target field method slime mold algorithm FPC technology
原文传递
Optimal Implementation of Photovoltaic and Battery Energy Storage in Distribution Networks
11
作者 Hussein Abdel-Mawgoud Salah Kamel +2 位作者 Hegazy Rezk Tahir Khurshaid Sang-Bong Rhee 《Computers, Materials & Continua》 SCIE EI 2021年第11期1463-1481,共19页
Recently,implementation of Battery Energy Storage(BES)with photovoltaic(PV)array in distribution networks is becoming very popular in overall the world.Integrating PV alone in distribution networks generates variable ... Recently,implementation of Battery Energy Storage(BES)with photovoltaic(PV)array in distribution networks is becoming very popular in overall the world.Integrating PV alone in distribution networks generates variable output power during 24-hours as it depends on variable natural source.PV can be able to generate constant output power during 24-hours by installing BES with it.Therefore,this paper presents a new application of a recent metaheuristic algorithm,called Slime Mould Algorithm(SMA),to determine the best size,and location of photovoltaic alone or with battery energy storage in the radial distribution system(RDS).This algorithm is modeled from the behavior of SMA in nature.During the optimization process,the total active power loss during 24-hours is used as an objective function considering the equality and inequality constraints.In addition,the presented function is based on the probabilistic for PV output and different types of system load.The candidate buses for integrating PV and BES in the distribution network are determined by the real power loss sensitivity factor(PLSF).IEEE 69-bus RDS with different types of loads is used as a test system.The effectiveness of SMA is validated by comparing its results with those obtained by other well-known optimization algorithms. 展开更多
关键词 slime mould algorithm optimization distribution networks renewable energy UNCERTAINTY
在线阅读 下载PDF
Optimal Deep Transfer Learning Based Colorectal Cancer Detection and Classification Model
12
作者 Mahmoud Ragab Maged Mostafa Mahmoud +2 位作者 Amer H.Asseri Hani Choudhry Haitham A.Yacoub 《Computers, Materials & Continua》 SCIE EI 2023年第2期3279-3295,共17页
Colorectal carcinoma(CRC)is one such dispersed cancer globally and also prominent one in causing cancer-based death.Conventionally,pathologists execute CRC diagnosis through visible scrutinizing under the microscope t... Colorectal carcinoma(CRC)is one such dispersed cancer globally and also prominent one in causing cancer-based death.Conventionally,pathologists execute CRC diagnosis through visible scrutinizing under the microscope the resected tissue samples,stained and fixed through Haematoxylin and Eosin(H&E).The advancement of graphical processing systems has resulted in high potentiality for deep learning(DL)techniques in interpretating visual anatomy from high resolution medical images.This study develops a slime mould algorithm with deep transfer learning enabled colorectal cancer detection and classification(SMADTL-CCDC)algorithm.The presented SMADTL-CCDC technique intends to appropriately recognize the occurrence of colorectal cancer.To accomplish this,the SMADTLCCDC model initially undergoes pre-processing to improve the input image quality.In addition,a dense-EfficientNet technique was employed to extract feature vectors from the pre-processed images.Moreover,SMA with Discrete Hopfield neural network(DHNN)method was applied for the recognition and classification of colorectal cancer.The utilization of SMA assists in appropriately selecting the parameters involved in the DHNN approach.A wide range of experiments was implemented on benchmark datasets to assess the classification performance.A comprehensive comparative study highlighted the better performance of the SMADTL-CDC model over the recent approaches. 展开更多
关键词 Colorectal cancer deep transfer learning slime mould algorithm hyperparameter optimization biomedical imaging
在线阅读 下载PDF
考虑多场景充电需求预测的电动汽车充电站规划 被引量:5
13
作者 罗平 杨泽喆 +3 位作者 张嘉昊 杨晴 吕强 吴秋轩 《高电压技术》 北大核心 2025年第1期368-378,I0040-I0044,共16页
电动汽车(electric vehicle,EV)数量增加和续航能力增强使得EV-交通网-电网间的耦合更加复杂,如何准确描述复杂耦合情况下EV的充电需求,平衡充电站运营商和EV用户利益,是EV充电站规划须考虑的问题。为此,首先采用蒙特卡洛法得到典型场... 电动汽车(electric vehicle,EV)数量增加和续航能力增强使得EV-交通网-电网间的耦合更加复杂,如何准确描述复杂耦合情况下EV的充电需求,平衡充电站运营商和EV用户利益,是EV充电站规划须考虑的问题。为此,首先采用蒙特卡洛法得到典型场景下规划区内每台EV的充电需求,将不同道路节点各时段的充电电量聚类到对应的聚类中心节点,并利用高斯混合模型拟合得到其概率密度函数。然后,建立综合考虑充电站和用户利益的EV充电站规划双层优化模型,基于复杂网络理论和电压敏感系数指标分别从交通网和电网的角度筛选备选充电站节点,并采用黏菌优化算法对其进行求解。最后,以245节点路网和IEEE 30节点电网构成的耦合网络为例,对比结果验证了所提规划方法既能保留EV充电需求的时空分布特点,又有利于充电站和用户的双赢。 展开更多
关键词 EV 充电需求 分时聚类 双层优化 充电站规划 黏菌优化算法
原文传递
基于源荷协同的热电联产机组负荷优化分配 被引量:3
14
作者 李杰 胡勇 +4 位作者 张语珊 邓丹 梁璐 曾德良 刘吉臻 《热力发电》 北大核心 2025年第1期46-55,共10页
热电厂传统供热方式能源利用效率低,为深度挖掘热电联产机组节能潜力,提出一种综合考虑热负荷侧和热源侧的热电联产机组源荷协同负荷优化分配模型。在负荷侧考虑气象扰动建立了修正的室外温度-热负荷预测模型,热源侧建立了热电联产机组... 热电厂传统供热方式能源利用效率低,为深度挖掘热电联产机组节能潜力,提出一种综合考虑热负荷侧和热源侧的热电联产机组源荷协同负荷优化分配模型。在负荷侧考虑气象扰动建立了修正的室外温度-热负荷预测模型,热源侧建立了热电联产机组能效变工况模型;以全部供热机组发电煤耗率最低为目标构建源-荷协同的多机组优化调度模型;最后在由6台热电联产机组和2组加热器组成的热网供热场景开展仿真验证。仿真结果表明,基于热负荷预测值的源荷协同热电联产机组负荷优化分配方法可以有效降低供热期内机组总煤耗量,相比传统分配方法,典型尖峰供暖期1天内热电厂煤耗量可以减少214.56 t。所提负荷优化分配方法有助于提高热电厂运行经济性,具有一定实际应用价值。 展开更多
关键词 热电联产 热负荷预测 源荷协同 黏菌算法 负荷优化分配
在线阅读 下载PDF
基于优选模型和灰狼算法的注塑工艺参数优化 被引量:1
15
作者 林峰 孙永华 +2 位作者 李国琳 李西兵 连灿鑫 《塑料》 北大核心 2025年第1期100-107,共8页
采用Moldflow软件对食品保鲜盒盖的注塑成型过程进行模拟分析,目的是通过优化注塑工艺参数,最大限度地减小产品的体积收缩率,从而提高产品质量。采用筛选试验设计的方法,确定对注塑成型过程影响较显著的参数。然后,构建多个近似模型,并... 采用Moldflow软件对食品保鲜盒盖的注塑成型过程进行模拟分析,目的是通过优化注塑工艺参数,最大限度地减小产品的体积收缩率,从而提高产品质量。采用筛选试验设计的方法,确定对注塑成型过程影响较显著的参数。然后,构建多个近似模型,并对这些模型进行细致的比较分析,筛选出性能最佳的模型。最后,利用灰狼优化算法对最优模型进行参数优化,得到最优注塑工艺参数组合,并进行模拟验证和实际验证。结果表明,采用优化后的注塑工艺参数组合制备的产品的体积收缩率显著减小,由初始的5.837%下降至4.01%,下降了31.3%,证明了结合计算机模拟、更优的模型和智能优化算法在注塑工艺优化中具有有效性及较好的应用潜力。 展开更多
关键词 注塑工艺参数 筛选试验设计 中心复合试验 最优拉丁超立方抽样 灰狼优化算法
原文传递
复合材料模压成型工艺参数优化方法 被引量:2
16
作者 杨泽青 杜竞旋 +2 位作者 胡宁 张延星 金一 《河北大学学报(自然科学版)》 北大核心 2025年第1期104-112,共9页
针对传统模压成型工艺能耗高、生产效率低、产品质量不稳定等问题,提出一种基于自适应遗传算法的模压成型工艺优化方法,用来优化模压成型过程中保温时间、模压压力以及温度等参数,该方法将实验得到的工艺数据作为输入层神经元,以成型质... 针对传统模压成型工艺能耗高、生产效率低、产品质量不稳定等问题,提出一种基于自适应遗传算法的模压成型工艺优化方法,用来优化模压成型过程中保温时间、模压压力以及温度等参数,该方法将实验得到的工艺数据作为输入层神经元,以成型质量翘曲变形量作为输出层神经元,构建BP神经网络,由此得到翘曲变形与模压压力、保温时间、温度之间的函数关系,然后运用自适应遗传算法对多工艺参数进行优化,经过二进制编码、选择、交叉、变异等步骤,最后解码得到优化后的结果.研究结果表明,自适应遗传算法能够对模压成型过程中因保温时间、模压压力以及温度三者不平衡引起的翘曲变形量有很好的改善效果,能提高产品成型质量. 展开更多
关键词 模压成型 工艺参数 多参数优化 自适应遗传算法
在线阅读 下载PDF
插排面板注塑成型多目标优化 被引量:1
17
作者 刘巨保 廉成林 +3 位作者 杨明 李峰 张亮 侯健超 《塑料》 北大核心 2025年第3期112-119,共8页
以插排面板为研究对象,在Design-Expert软件中进行Box-Behnken方案设计,利用Moldflow软件对各方案进行模流分析,并且,采用响应面法建立工艺参数与响应目标之间的数学关系,采用实际值与预测值分布图以及决定系数R2检验其精度。利用非支... 以插排面板为研究对象,在Design-Expert软件中进行Box-Behnken方案设计,利用Moldflow软件对各方案进行模流分析,并且,采用响应面法建立工艺参数与响应目标之间的数学关系,采用实际值与预测值分布图以及决定系数R2检验其精度。利用非支配排序遗传算法(NSGA-Ⅱ)对响应面模型迭代寻优得到最优工艺参数组合,采用Moldflow软件对得到的最优工艺参数组合进行模拟,与优化算法预测值相比,翘曲变形和体积收缩率的误差分别为4.20%、0.78%,与原始方案相比,翘曲变形量降低了18.27%,体积收缩率降低了18.34%。试模验证结果表明,塑件的翘曲变形值与优化算法结果误差为2.83%,证明了采用的优化算法的准确性。 展开更多
关键词 注塑成型 响应面法 非支配排序遗传算法 模流分析 参数优化
原文传递
改进黏菌优化的移动自导引机器人路径规划控制算法
18
作者 杨红 李生明 《机械设计与研究》 北大核心 2025年第3期359-366,共8页
针对传统移动自导引机器人(AGV)路径规划方法容易生成局部最优路径的不足,提出改进黏菌优化的路径规划算法(ISMA)。为了提升算法的搜索精度,引入Logistic-Tent混合混沌映射优化初始种群结构,提升种群多样性;设计反馈因子非线性调节实现... 针对传统移动自导引机器人(AGV)路径规划方法容易生成局部最优路径的不足,提出改进黏菌优化的路径规划算法(ISMA)。为了提升算法的搜索精度,引入Logistic-Tent混合混沌映射优化初始种群结构,提升种群多样性;设计反馈因子非线性调节实现全局最优路径的探采均衡;融入动态透镜成像对立学习使算法能够跳离局部最优路径。以栅格地图构建路径规划模型,综合考虑路径总长、平滑性及安全性3个因素构建适应度函数评估搜索个体优劣,实现ISMA算法对路径规划的迭代寻优。先利用8个不同形态特征的基准函数对ISMA算法的搜索性能进行数值仿真分析,同时建立多个实验场景对改进算法的导航路径搜索性能进行实验分析。结果表明:与5种同类型智能优化算法相比,ISMA算法搜索精度更高,生成的路径安全无碰撞,路径长度更短且更平滑,改进算法具备一定的性能优势。 展开更多
关键词 黏菌优化算法 自导引机器人 路径规划 混合混沌 透镜成像
原文传递
深度经颅磁刺激线圈设计及多目标黏菌算法
19
作者 熊慧 朱记斌 刘近贞 《生物医学工程学杂志》 北大核心 2025年第4期716-723,共8页
经颅磁刺激(TMS)的治疗效果与刺激线圈的结构密切相关。基于此,本研究设计了一种A字形线圈,并提出了一种多策略融合的多目标黏菌算法(MSSMA),旨在优化线圈的刺激深度、聚焦性及刺激强度。MSSMA通过融合双精英引导机制、双曲正切调控策... 经颅磁刺激(TMS)的治疗效果与刺激线圈的结构密切相关。基于此,本研究设计了一种A字形线圈,并提出了一种多策略融合的多目标黏菌算法(MSSMA),旨在优化线圈的刺激深度、聚焦性及刺激强度。MSSMA通过融合双精英引导机制、双曲正切调控策略以及混合多项式变异策略,显著提升了算法的收敛性与多样性。此外,与其他刺激线圈相比,经本文MSSMA算法优化的新型线圈在刺激深度方面表现优异。为了验证优化效果,搭建了磁场测量系统,通过对比测量数据与仿真数据,证实了本文算法可有效优化线圈性能。综上,本研究为深度TMS提供了新的方案,所提出的算法对多目标工程优化问题具有重要的参考价值。 展开更多
关键词 黏菌算法 多目标优化 经颅磁刺激 A字形线圈 刺激深度
原文传递
基于GO法和MSIMOSMA的全机结构试验系统可靠性优化设计
20
作者 冯蕴雯 崔宇航 +4 位作者 贺谦 李煜辉 薛小锋 宋乐 陆俊 《航空科学技术》 2025年第8期87-96,共10页
全机结构试验系统(FSST)可靠性优化设计是试验顺利进行和获得准确试验结果的重要保障,传统方法往往忽视了复杂系统特性和优化结果的鲁棒性。针对这一问题,本文提出了基于GO法和多策略改进的多目标黏菌算法(MSIMOSMA)的FSST可靠性优化设... 全机结构试验系统(FSST)可靠性优化设计是试验顺利进行和获得准确试验结果的重要保障,传统方法往往忽视了复杂系统特性和优化结果的鲁棒性。针对这一问题,本文提出了基于GO法和多策略改进的多目标黏菌算法(MSIMOSMA)的FSST可靠性优化设计方法。首先权衡可靠性指标、成本以及优化结果鲁棒性之间的关系,构建了FSST可靠性优化设计模型。其次考虑元件累积、备用相关性、多闭环反馈等复杂系统特性,采用GO法建立FSST可靠性评估模型。为解决多目标优化问题,本文提出了MSIMOSMA进行求解。最后,结合实际案例,得到了FSST关键元件的可靠度优化区间,并与传统多目标优化方法进行对比,所提出的方法性能评价指标HV值相对提高了10.1%,SP值相对降低了30.8%,验证了所提方法在FSST可靠性优化设计中的优越性。 展开更多
关键词 FSST 可靠性优化设计 GO法 多目标优化 黏菌算法
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部