In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u...In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.展开更多
Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security...Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.展开更多
With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant c...With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.展开更多
The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle co...The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle costs.To achieve the reliable,rapid,and accurate RUL prognostics,the balance between accuracy and computational burden deserves more attention.In addition,the uncertainty is intrinsically present in RUL prognostic process.Due to the limitation of the uncertainty quantification,the point-wise prognostics strategy is not trustworthy.A Dual Adaptive Sliding-window Hybrid(DASH)RUL probabilistic prognostics strategy is proposed to tackle these deficiencies.The DASH strategy contains two adaptive mechanisms,the adaptive Long Short-Term Memory-Polynomial Regression(LSTM-PR)hybrid prognostics mechanism and the adaptive sliding-window Kernel Density Estimation(KDE)probabilistic prognostics mechanism.Owing to the dual adaptive mechanisms,the DASH strategy can achieve the balance between accuracy and computational burden and obtain the trustworthy probabilistic prognostics.Based on the degradation dataset of aircraft electromagnetic contactors,the superiority of DASH strategy is validated.In terms of probabilistic,point-wise and integrated prognostics performance,the proposed strategy increases by 66.89%,81.73% and 25.84%on average compared with the baseline methods and their variants.展开更多
为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解...为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解码.利用多尺度卷积模块提取信号的底层时空特征,通过滑动窗口注意力机制聚焦局部关键特征,突出对分类任务重要的信息.窗口化时间卷积模块通过建模时间序列中的长期依赖关系,增强模型处理时序信息的能力.实验结果表明,MSWATCN在BCI Competition IV 2a和2b数据集上的分类准确率和一致性优于对比网络和基准模型.展开更多
We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by ...We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by using radial basis function (RBF) networks. The result of the forward sliding windows sug-gests that the accuracies and Matthews correlation coefficient (MCC values) ascend with the increasing of length of sliding windows. The accuracies range from 73.27 % to 80.69 %,and MCC values range from 0.465 to 0.614. The backward sliding windows and the sliding windows with fixed length three are de-signed to find the crucial sites related to SNP. The results imply that the occurrence possibility of SNP relies heavily on the above physical and chemical features of sites which are at a distance around 20 bases from the SNP site. Compared with the support vector machine (SVM),our RBF network approach has achieved more satisfactory results.展开更多
This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constru...This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.展开更多
In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path plannin...In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.展开更多
Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the ta...Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.展开更多
Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used fo...Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.展开更多
This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the leng...This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the length of the pattern, allowing multiple alignments in the searching process. The text is divided into two parts;each part is scanned from both sides simultaneously using two sliding windows. The four windows slide in parallel in both parts of the text. The comparisons done between the text and the pattern are done from both of the pattern sides in parallel. The conducted experiments show that FSW achieves the best overall results in the number of attempts and the number of character comparisons compared to the pattern matching algorithms: Two Sliding Windows (TSW), Enhanced Two Sliding Windows algorithm (ETSW) and Berry-Ravindran algorithm (BR). The best time case is calculated and found to be??while the average case time complexity is??.展开更多
How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree alg...How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree algorithm based on sliding window is proposed in this paper. Due to the proposal of concept area, the Linked-tree algorithm reuses many primary results in last window and then avoids lots of unnecessary repeated comparison operations between two successive windows. As a result, execution efficiency of MAX query is improved dramatically. In addition, since the size of memory is relevant to the number of areas but irrelevant to the size of sliding window, memory is economized greatly. The extensive experimental results show that the performance of Linked-tree algorithm has significant improvement gains over the traditional SC (Simple Compared) algorithm and Ranked-tree algorithm.展开更多
Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input stream...Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input streams are restricted to finite memory due to sliding window constraints. So far, non-indexed and indexed stream equijoin algorithms based on sliding windows have been proposed in many literatures. However, none of them takes non-equijoin into consideration. In many eases, non-equijoin queries occur frequently. Hence, it is worth to discuss how to process non-equijoin queries effectively and efficiently. In this paper, we propose an indexed join algorithm for supporting non-equijoin queries. The experimental results show that our indexed non-equijoin techniques are more efficient than those without index.展开更多
Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent ...Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent problems to be solved.Herein,we present a practical and robust file-level flow-control approach,called the Unlimited Sliding-Window(USW),by referring to the classic flow-control method in the TCP protocol.Based on the USW and the Next Generation Archive System(NGAS)developed for the Murchison Widefield Array telescope,we further implemented an enhanced archive system(ENGAS)using ZeroMQ middleware.The ENGAS substantially improves the transfer performance and ensures the integrity of transferred files.In the tests,the ENGAS is approximately three to twelve times faster than the NGAS and can fully utilize the bandwidth of network links.Thus,for archiving radio observation data,the ENGAS reduces the communication time,improves the bandwidth utilization,and solves the remote synchronous archiving of data from observatories such as Mingantu spectral radioheliograph.It also provides a better reference for the future construction of the Square Kilometer Array(SKA)Science Regional Center.展开更多
To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s...To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”展开更多
In order to improve the efficiency of the fingerprint core location algorithm, a fingerprint core location method using sliding window on the basis of core location algorithm with the complex filter was proposed. The ...In order to improve the efficiency of the fingerprint core location algorithm, a fingerprint core location method using sliding window on the basis of core location algorithm with the complex filter was proposed. The local region of the fingerprint image was extracted by a fixed-size window sliding in the region of the fingerprint image, and the selected local region by window as the calculation object is used to detect the core. The experiment results show that the method cannot only effectively detect fingerprint core, but also improve the efficiency of the detection algorithm comparing with the global fingerprint core location detection algorithm.展开更多
Switch and router architectures employing a shared buffer are known to provide high throughput, low delay, and high memory utilization. Superior performance of a shared-memory switch compared to switches employing oth...Switch and router architectures employing a shared buffer are known to provide high throughput, low delay, and high memory utilization. Superior performance of a shared-memory switch compared to switches employing other buffer strategies can be achieved by carefully implementing a buffer-management scheme. A buffer-sharing policy should allow all of the output interfaces to have fair and robust access to buffer resources. The sliding-window (SW) packet switch is a novel architecture that uses an array of parallel memory modules that are logically shared by all input and output lines to store and process data packets. The innovative aspects of the SW architecture are the approach to accomplishing parallel operation and the simplicity of the control functions. The implementation of a buffer-management scheme in a SW packet switch is dependent on how the buffer space is organized into output queues. This paper presents an efficient SW buffer-management scheme that regulates the sharing of the buffer space. We compare the proposed scheme with previous work under bursty traffic conditions. Also, we explain how the proposed buffer-management scheme can provide quality-of-service (QoS) to different traffic classes.展开更多
基金supported by the National Natural Science Foundation of China (No.62275193)。
文摘In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication.
基金supported by the National Undergraduate Innovation and Entrepreneurship Training Program of China(Project No.202510559076)at Jinan University,a nationwide initiative administered by the Ministry of Educationthe National Natural Science Foundation of China(NSFC)under Grant No.62172189.
文摘Persistent flows are defined as network flows that persist over multiple time intervals and continue to exhibit activity over extended periods,which are critical for identifying long-term behaviors and subtle security threats.Programmable switches provide line-rate packet processing to meet the requirements of high-speed network environments,yet they are fundamentally limited in computational and memory resources.Accurate and memoryefficient persistent flow detection on programmable switches is therefore essential.However,existing approaches often rely on fixed-window sketches or multiple sketches instances,which either suffer from insufficient temporal precision or incur substantial memory overhead,making them ineffective on programmable switches.To address these challenges,we propose SP-Sketch,an innovative sliding-window-based sketch that leverages a probabilistic update mechanism to emulate slot expiration without maintaining multiple sketch instances.This innovative design significantly reduces memory consumption while preserving high detection accuracy across multiple time intervals.We provide rigorous theoretical analyses of the estimation errors,deriving precise error bounds for the proposed method,and validate our approach through comprehensive implementations on both P4 hardware switches(with Intel Tofino ASIC)and software switches(i.e.,BMv2).Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch outperforms traditional methods,improving accuracy by up to 20%over baseline sliding window approaches and enhancing recall by 5%compared to non-sliding alternatives.Furthermore,SP-Sketch achieves a significant reduction in memory utilization,reducing memory consumption by up to 65%compared to traditional methods,while maintaining a robust capability to accurately track persistent flow behavior over extended time periods.
基金supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F020004in part by the National College Student Innovation and Research Training Program under Grant 202313283002.
文摘With the rapid advancement of Voice over Internet Protocol(VoIP)technology,speech steganography techniques such as Quantization Index Modulation(QIM)and Pitch Modulation Steganography(PMS)have emerged as significant challenges to information security.These techniques embed hidden information into speech streams,making detection increasingly difficult,particularly under conditions of low embedding rates and short speech durations.Existing steganalysis methods often struggle to balance detection accuracy and computational efficiency due to their limited ability to effectively capture both temporal and spatial features of speech signals.To address these challenges,this paper proposes an Efficient Sliding Window Analysis Network(E-SWAN),a novel deep learning model specifically designed for real-time speech steganalysis.E-SWAN integrates two core modules:the LSTM Temporal Feature Miner(LTFM)and the Convolutional Key Feature Miner(CKFM).LTFM captures long-range temporal dependencies using Long Short-Term Memory networks,while CKFM identifies local spatial variations caused by steganographic embedding through convolutional operations.These modules operate within a sliding window framework,enabling efficient extraction of temporal and spatial features.Experimental results on the Chinese CNV and PMS datasets demonstrate the superior performance of E-SWAN.Under conditions of a ten-second sample duration and an embedding rate of 10%,E-SWAN achieves a detection accuracy of 62.09%on the PMS dataset,surpassing existing methods by 4.57%,and an accuracy of 82.28%on the CNV dataset,outperforming state-of-the-art methods by 7.29%.These findings validate the robustness and efficiency of E-SWAN under low embedding rates and short durations,offering a promising solution for real-time VoIP steganalysis.This work provides significant contributions to enhancing information security in digital communications.
基金co-supported by the National Natural Science Foundation of China(Nos.52272403,52402506)Natural Science Basic Research Program of Shaanxi,China(Nos.2022JC-27,2023-JC-QN-0599)。
文摘The reliable,rapid,and accurate Remaining Useful Life(RUL)prognostics of aircraft power supply and distribution system are essential for enhancing the reliability and stability of system and reducing the life-cycle costs.To achieve the reliable,rapid,and accurate RUL prognostics,the balance between accuracy and computational burden deserves more attention.In addition,the uncertainty is intrinsically present in RUL prognostic process.Due to the limitation of the uncertainty quantification,the point-wise prognostics strategy is not trustworthy.A Dual Adaptive Sliding-window Hybrid(DASH)RUL probabilistic prognostics strategy is proposed to tackle these deficiencies.The DASH strategy contains two adaptive mechanisms,the adaptive Long Short-Term Memory-Polynomial Regression(LSTM-PR)hybrid prognostics mechanism and the adaptive sliding-window Kernel Density Estimation(KDE)probabilistic prognostics mechanism.Owing to the dual adaptive mechanisms,the DASH strategy can achieve the balance between accuracy and computational burden and obtain the trustworthy probabilistic prognostics.Based on the degradation dataset of aircraft electromagnetic contactors,the superiority of DASH strategy is validated.In terms of probabilistic,point-wise and integrated prognostics performance,the proposed strategy increases by 66.89%,81.73% and 25.84%on average compared with the baseline methods and their variants.
文摘为了提升运动想象脑电(MI-EEG)信号的分类精度,提出多尺度滑窗注意力时序卷积网络(MSWATCN),充分挖掘MI-EEG信号的时空信息.结合多尺度双流分组卷积、滑动窗口多头注意力机制和窗口化时间卷积模块,实现对MI-EEG信号复杂时空特性的精准解码.利用多尺度卷积模块提取信号的底层时空特征,通过滑动窗口注意力机制聚焦局部关键特征,突出对分类任务重要的信息.窗口化时间卷积模块通过建模时间序列中的长期依赖关系,增强模型处理时序信息的能力.实验结果表明,MSWATCN在BCI Competition IV 2a和2b数据集上的分类准确率和一致性优于对比网络和基准模型.
基金Supported by Discipline-Crossing Research Foundation of Huazhong Agricultural University(2008XKJC006)the Fundamental Research Funds for the Central Universities of China
文摘We extract some physical and chemical features re-lated to the occurrence of single nucleotide polymorphism (SNP) from three groups of sliding windows around SNP site,and then make the predictions about accuracy by using radial basis function (RBF) networks. The result of the forward sliding windows sug-gests that the accuracies and Matthews correlation coefficient (MCC values) ascend with the increasing of length of sliding windows. The accuracies range from 73.27 % to 80.69 %,and MCC values range from 0.465 to 0.614. The backward sliding windows and the sliding windows with fixed length three are de-signed to find the crucial sites related to SNP. The results imply that the occurrence possibility of SNP relies heavily on the above physical and chemical features of sites which are at a distance around 20 bases from the SNP site. Compared with the support vector machine (SVM),our RBF network approach has achieved more satisfactory results.
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘This paper presents two one-pass algorithms for dynamically computing frequency counts in sliding window over a data stream-computing frequency counts exceeding user-specified threshold ε. The first algorithm constructs subwindows and deletes expired sub-windows periodically in sliding window, and each sub-window maintains a summary data structure. The first algorithm outputs at most 1/ε + 1 elements for frequency queries over the most recent N elements. The second algorithm adapts multiple levels method to deal with data stream. Once the sketch of the most recent N elements has been constructed, the second algorithm can provides the answers to the frequency queries over the most recent n ( n≤N) elements. The second algorithm outputs at most 1/ε + 2 elements. The analytical and experimental results show that our algorithms are accurate and effective.
基金Supported by the National Natural Science Foundation of China(No.61233014,61305130,61503153)the National High Technology Research and Development Program of China(No.2015AA042201)+1 种基金the Shandong Provincial Natural Science Foundation(No.ZR2013FQ003,ZR2013EEM027)China Postdoctoral Science Foundation(No.2013M541912)
文摘In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.
基金Fundamental Research Funds for the Central Universities of Ministry of Education of China。
文摘Principal component analysis(PCA)has been already employed for fault detection of air conditioning systems.The sliding window,which is composed of some parameters satisfying with thermal load balance,can select the target historical fault-free reference data as the template which is similar to the current snapshot data.The size of sliding window is usually given according to empirical values,while the influence of different sizes of sliding windows on fault detection of an air conditioning system is not further studied.The air conditioning system is a dynamic response process,and the operating parameters change with the change of the load,while the response of the controller is delayed.In a variable air volume(VAV)air conditioning system controlled by the total air volume method,in order to ensure sufficient response time,30 data points are selected first,and then their multiples are selected.Three different sizes of sliding windows with 30,60 and 90 data points are applied to compare the fault detection effect in this paper.The results show that if the size of the sliding window is 60 data points,the average fault-free detection ratio is 80.17%in fault-free testing days,and the average fault detection ratio is 88.47%in faulty testing days.
文摘Join operation is a critical problem when dealing with sliding window over data streams. There have been many optimization strategies for sliding window join in the literature, but a simple heuristic is always used for selecting the join sequence of many sliding windows, which is ineffectively. The graph-based approach is proposed to process the problem. The sliding window join model is introduced primarily. In this model vertex represent join operator and edge indicated the join relationship among sliding windows. Vertex weight and edge weight represent the cost of join and the reciprocity of join operators respectively. Then good query plan with minimal cost can be found in the model. Thus a complete join algorithm combining setting up model, finding optimal query plan and executing query plan is shown. Experiments show that the graph-based approach is feasible and can work better in above environment.
文摘This paper presents an efficient pattern matching algorithm (FSW). FSW improves the searching process for a pattern in a text. It scans the text with the help of four sliding windows. The windows are equal to the length of the pattern, allowing multiple alignments in the searching process. The text is divided into two parts;each part is scanned from both sides simultaneously using two sliding windows. The four windows slide in parallel in both parts of the text. The comparisons done between the text and the pattern are done from both of the pattern sides in parallel. The conducted experiments show that FSW achieves the best overall results in the number of attempts and the number of character comparisons compared to the pattern matching algorithms: Two Sliding Windows (TSW), Enhanced Two Sliding Windows algorithm (ETSW) and Berry-Ravindran algorithm (BR). The best time case is calculated and found to be??while the average case time complexity is??.
基金Supported by the National Natural Science Foun-dation of China (60573089) the National 985 Project Fundation(985-2-DB-Y01)
文摘How to process aggregate queries over data streams efficiently and effectively have been becoming hot re search topics in both academic community and industrial community. Aiming at the issues, a novel Linked-tree algorithm based on sliding window is proposed in this paper. Due to the proposal of concept area, the Linked-tree algorithm reuses many primary results in last window and then avoids lots of unnecessary repeated comparison operations between two successive windows. As a result, execution efficiency of MAX query is improved dramatically. In addition, since the size of memory is relevant to the number of areas but irrelevant to the size of sliding window, memory is economized greatly. The extensive experimental results show that the performance of Linked-tree algorithm has significant improvement gains over the traditional SC (Simple Compared) algorithm and Ranked-tree algorithm.
基金Supported by the National Natural Science Foun-dation of China (60473073)
文摘Processing a join over unbounded input streams requires unbounded memory, since every tuple in one infinite stream must be compared with every tuple in the other. In fact, most join queries over unbounded input streams are restricted to finite memory due to sliding window constraints. So far, non-indexed and indexed stream equijoin algorithms based on sliding windows have been proposed in many literatures. However, none of them takes non-equijoin into consideration. In many eases, non-equijoin queries occur frequently. Hence, it is worth to discuss how to process non-equijoin queries effectively and efficiently. In this paper, we propose an indexed join algorithm for supporting non-equijoin queries. The experimental results show that our indexed non-equijoin techniques are more efficient than those without index.
基金supported by the National Key Research and Development Program of China(2020SKA0110300)the Joint Research Fund in Astronomy(U1831204 and U1931141)under cooperative agreement between the National Natural Science Foundation of China(NSFC)+7 种基金the Chinese Academy of Sciences(CAS)(NSFC,No.11903009)the Funds for International Cooperation and Exchange of the NSFC(11961141001)Yunnan Key Research and Development Program(2018IA054)The Key Science and Technology Program of Henan Province(Nos.202102210152,212102210611 and 202102210125)the Research and Cultivation Fund Project of Anyang Normal University(AYNUKPY-2019-24 and AYNUKPY-2020-25)supported by Astronomical Big Data Joint Research Centerco-founded by the National Astronomical ObservatoriesChinese Academy of Sciences and Alibaba Cloud。
文摘Data archiving is one of the most critical issues for modern astronomical observations.With the development of a new generation of radio telescopes,the transfer and archiving of massive remote data have become urgent problems to be solved.Herein,we present a practical and robust file-level flow-control approach,called the Unlimited Sliding-Window(USW),by referring to the classic flow-control method in the TCP protocol.Based on the USW and the Next Generation Archive System(NGAS)developed for the Murchison Widefield Array telescope,we further implemented an enhanced archive system(ENGAS)using ZeroMQ middleware.The ENGAS substantially improves the transfer performance and ensures the integrity of transferred files.In the tests,the ENGAS is approximately three to twelve times faster than the NGAS and can fully utilize the bandwidth of network links.Thus,for archiving radio observation data,the ENGAS reduces the communication time,improves the bandwidth utilization,and solves the remote synchronous archiving of data from observatories such as Mingantu spectral radioheliograph.It also provides a better reference for the future construction of the Square Kilometer Array(SKA)Science Regional Center.
基金This research was funded by the National Key R&D Program of China(No.2018YFB2100603)the Key R&D Program of Hubei Province(No.2022BAA048)+2 种基金the National Natural Science Foundation of China program(No.41890822)the Open Fund of National Engineering Research Centre for Geographic Information System,China University of Geosciences,Wuhan 430074,China(No.2022KFJJ07)The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Centre of Wuhan University.
文摘To protect the environment,the discharged sewage’s quality must meet the state’s discharge standards.There are many water quality indicators,and the pH(Potential of Hydrogen)value is one of them.The natural water’s pH value is 6.0–8.5.The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard.This paper aims to study the deep learning prediction model of wastewater’s pH.Firstly,the research uses the random forest method to select the data features and then,based on the sliding window,convert the data set into a time series which is the input of the deep learning training model.Secondly,by analyzing and comparing relevant references,this paper believes that the CNN(Convolutional Neural Network)model is better at nonlinear data modeling and constructs a CNN model including the convolution and pooling layers.After alternating the combination of the convolutional layer and pooling layer,all features are integrated into a full-connected neural network.Thirdly,the number of input samples of the CNN model directly affects the prediction effect of the model.Therefore,this paper adopts the sliding window method to study the optimal size.Many experimental results show that the optimal prediction model can be obtained when alternating six convolutional layers and three pooling layers.The last full-connection layer contains two layers and 64 neurons per layer.The sliding window size selects as 12.Finally,the research has carried out data prediction based on the optimal CNN deep learning model.The predicted pH of the sewage is between 7.2 and 8.6 in this paper.The result is applied in the monitoring system platform of the“Intelligent operation and maintenance platform of the reclaimed water plant.”
基金Supported in part by the National Natural Science Foundation of China(61301091)the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ6262)+1 种基金the Open Foundation of State Key Laboratory of Information Security(2015-MS-14)the New Star Team of Xi’an University of Posts&Telecommunications
文摘In order to improve the efficiency of the fingerprint core location algorithm, a fingerprint core location method using sliding window on the basis of core location algorithm with the complex filter was proposed. The local region of the fingerprint image was extracted by a fixed-size window sliding in the region of the fingerprint image, and the selected local region by window as the calculation object is used to detect the core. The experiment results show that the method cannot only effectively detect fingerprint core, but also improve the efficiency of the detection algorithm comparing with the global fingerprint core location detection algorithm.
文摘Switch and router architectures employing a shared buffer are known to provide high throughput, low delay, and high memory utilization. Superior performance of a shared-memory switch compared to switches employing other buffer strategies can be achieved by carefully implementing a buffer-management scheme. A buffer-sharing policy should allow all of the output interfaces to have fair and robust access to buffer resources. The sliding-window (SW) packet switch is a novel architecture that uses an array of parallel memory modules that are logically shared by all input and output lines to store and process data packets. The innovative aspects of the SW architecture are the approach to accomplishing parallel operation and the simplicity of the control functions. The implementation of a buffer-management scheme in a SW packet switch is dependent on how the buffer space is organized into output queues. This paper presents an efficient SW buffer-management scheme that regulates the sharing of the buffer space. We compare the proposed scheme with previous work under bursty traffic conditions. Also, we explain how the proposed buffer-management scheme can provide quality-of-service (QoS) to different traffic classes.