With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potentia...With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking展开更多
Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant inf...Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant influence on the formation of special geomorphology and the distribution of geological hazards at the eastern edge of the Tibetan Plateau.The Anninghe fault zone is a key part of the Y-shaped fault pattern in the Sichuan-Yunnan block of China.In this paper,high-resolution topographic data,multitemporal remote sensing images,numerical calculations,seismic records,and comprehensive field investigations were employed to study the landslide distribution along the active part of the Anninghe.The influence of active faults on the lithology,rock mass structures and slope stress fields were also studied.The results show that the faults within the Anninghe fault zone have damaged the structure and integrity of the slope rock mass,reduced the mechanical strength of the rock mass and controlled the slope failure modes.The faults have also controlled the stress field,the distribution of the plastic strain zone and the maximum shear strain zone of the slope,thus have promoted the formation and evolution of landslides.We find that the studied landslides are linearly distributed along the Anninghe fault zone,and more than 80%of these landslides are within 2–3 km of the fault rupture zone.Moreover,the Anninghe fault zone provides abundant substance for landslides or debris flows.This paper presents four types of sliding mode control of the Anninghe fault zone,e.g.,constituting the whole landslide body,controlling the lateral boundary of the landslide,controlling the crown of the landslide,and constituting the toe of the landslide.The results presented merit close attention as a valuable reference source for local infrastructure planning and engineering projects.展开更多
This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor...This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor(PMSM) in d-q frame and its space-state equation are established. The slide model control method is used to estimate the electromotive force of PMSM under static frame, while the position of rotor and its actual speed are estimated by using phase loop lock(PLL) method. Next,using Lyapunov stability theorem, the asymptotical stability condition of the slide model observer is presented. Furthermore, based on the backstepping control theory, the PMSM rotor speed and current tracking backstepping controllers are designed, because such controllers display excellent speed tracking and anti-disturbance performance. Finally, Matlab simulation results show that the slide model observer can not only estimate the rotor position and speed of the PMSM accurately, but also ensure the asymptotical stability of the system and effective adjustment of rotor speed and current.展开更多
A novel control scheme is presented by using sliding-mode control for boost converter operating in continuous conduction mode (CCM). Although the non-ideal switching condition and physical constraint of the control ar...A novel control scheme is presented by using sliding-mode control for boost converter operating in continuous conduction mode (CCM). Although the non-ideal switching condition and physical constraint of the control are considered on the base of equivalent control, the scheme is still simple. By modifying the sliding-modc errors in each switching period, the steady-state errors and chattering can be substantially reduced. Simulation results confirm the theoretical analysis and show the improvement of the converter’s start-up behavior and low sensitivity to external perturbation.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
The modern nonlinear theory, bifurcation and chaos theory are used in this paper to analyze the dynamics of the Rikitake two-disk dynamo system. The mathematical model of the Rikitake system consists of three nonlinea...The modern nonlinear theory, bifurcation and chaos theory are used in this paper to analyze the dynamics of the Rikitake two-disk dynamo system. The mathematical model of the Rikitake system consists of three nonlinear differential equations, which found to be the same as the mathematical model of the well-known Lorenz system. The study showed that under certain value of control parameter, the system experiences a chaotic behaviour. The experienced chaotic oscillation may simulate the reversal of the Earth’s magnetic field. The main objective of this paper is to control the chaotic behaviour in Rikitake system. So, a nonlinear controller based on the slide mode control theory is designed. The study showed that the designed controller was so effective in controlling the unstable chaotic oscillations.展开更多
The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of th...The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung...In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung-mass subsystem(regarding ride comfort)and an unsprung-mass subsystem(regarding road holding),which correspond to two prescribed performance tracking problems.Subsequently,an integrated control law is designed by introducing the unsprung-mass sliding surface into the control of the sprung-mass one.To reduce chattering and stabilize the subsystems,a prescribed-time extended disturbance observer(PT-EDO)is designed,achieving the time-varying switching gain RDSMC(TVSG-RDSMC).Numerical simulations imply that the proposed TVSG-RDSMC can effectively improve ride comfort and road holding with a significantly reduced chattering.展开更多
Dear Editor,This letter presents a class of saturated sliding mode control (SMC)strategy for linear systems subject to impulsive disturbance and input saturation. To ensure the feasibility of proposed SMC under satura...Dear Editor,This letter presents a class of saturated sliding mode control (SMC)strategy for linear systems subject to impulsive disturbance and input saturation. To ensure the feasibility of proposed SMC under saturation, a relationship is established among attraction domain, saturation structure and control gain.展开更多
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr...For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.展开更多
The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To addre...The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.展开更多
UAV shipboard landing poses significant challenges in terms of safety and efficiency,due to the oscillatory ship motion caused by wave interactions and wind gusts,especially in rough sea states.To solve this issue,a f...UAV shipboard landing poses significant challenges in terms of safety and efficiency,due to the oscillatory ship motion caused by wave interactions and wind gusts,especially in rough sea states.To solve this issue,a flight envelope constrained fixed-time control strategy is proposed to achieve a reliable UAV landing on a maneuvering ship.Firstly,a sliding data window autoregressive model is designed to predict the ship's roll and pitch motions,which are accordingly utilized to identify an appropriate quiescent period for safe landing.Subsequently,a barrier-function-based nonsingular terminal sliding mode controller is developed to eliminate the tracking errors within the identified quiescent period,while ensuring the errors remain bounded to satisfy flight envelope constraints.In particular,lumped disturbance components are estimated by integrating a fixed-time disturbance observer and compensated in the controller.The key advantage of the proposed approach is that it well balances the control requirements between precise landing position and safe landing attitude,guaranteeing both steady-state performance and transient behavior of the tracking error.Finally,comparative Gazebo simulations in different sea state scenarios are conducted to verify the satisfactory control performance.展开更多
The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tether...The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems,tailored to enhance space debris management.Utilizing the nodal position finite element method,the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics.This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes.To overcome the limitations of conventional control techniques,a robust adaptive sliding mode control strategy is developed.This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control,critical for successful debris removal.Validated through extensive numerical simulations,our model and control strategy demonstrate substantial improvements in operational reliability and safety,significantly enhancing the success rate of deorbiting missions.展开更多
Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a pa...Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.展开更多
This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance ...This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.展开更多
This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an ...This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an adaptive exponential reaching law with a continuous barrier function,the proposed approach eliminates chattering and ensures robust performance under model uncertainties.The methodology combines adaptive SMC with dynamic switching to estimate and compensates for unknown uncertainties,providing smooth and stable control.Finally,the performance and effectiveness of the proposed approach are compared with those of a previous study.展开更多
Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper ...Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.展开更多
Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory ...Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively.展开更多
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi...This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.展开更多
基金Supported by National Key Scientific and Technological Project(Grant No.2010ZX04001-051-031)Key Program of National Natural Science Foundation of China((Grant No.61533014)the Innovative Research Team of Shaanxi Province,China(Grant No.2013KCT-04)
文摘With the price decreasing of the pneumatic proportional valve and the high performance micro controller, the simple structure and high tracking performance pneumatic servo system demonstrates more application potential in many fields. However, most existing control methods with high tracking performance need to know the model information and to use pressure sensor. This limits the application of the pneumatic servo system. An adaptive backstepping slide mode control method is proposed for pneumatic position servo system. The proposed method designs adaptive slide mode controller using backstepping design technique. The controller parameter adaptive law is derived from Lyapunov analysis to guarantee the stability of the system. A theorem is testified to show that the state of closed-loop system is uniformly bounded, and the closed-loop system is stable. The advantages of the proposed method include that system dynamic model parameters are not required for the controller design, uncertain parameters bounds are not need, and the bulk and expensive pressure sensor is not needed as well. Experimental performance, as compared with some existing methods. results show that the designed controller can achieve better tracking
基金supported by China Geological Survey Projects(Grant No.20160272,20211379)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0904)Sichuan Science and Technology Program of China(Grant No.2020YFS0296).
文摘Tibetan Plateau is known as the roof of the world.Due to the continuous uplift of the Tibetan Plateau,many active fault zones are present.These active fault zones such as the Anninghe fault zone have a significant influence on the formation of special geomorphology and the distribution of geological hazards at the eastern edge of the Tibetan Plateau.The Anninghe fault zone is a key part of the Y-shaped fault pattern in the Sichuan-Yunnan block of China.In this paper,high-resolution topographic data,multitemporal remote sensing images,numerical calculations,seismic records,and comprehensive field investigations were employed to study the landslide distribution along the active part of the Anninghe.The influence of active faults on the lithology,rock mass structures and slope stress fields were also studied.The results show that the faults within the Anninghe fault zone have damaged the structure and integrity of the slope rock mass,reduced the mechanical strength of the rock mass and controlled the slope failure modes.The faults have also controlled the stress field,the distribution of the plastic strain zone and the maximum shear strain zone of the slope,thus have promoted the formation and evolution of landslides.We find that the studied landslides are linearly distributed along the Anninghe fault zone,and more than 80%of these landslides are within 2–3 km of the fault rupture zone.Moreover,the Anninghe fault zone provides abundant substance for landslides or debris flows.This paper presents four types of sliding mode control of the Anninghe fault zone,e.g.,constituting the whole landslide body,controlling the lateral boundary of the landslide,controlling the crown of the landslide,and constituting the toe of the landslide.The results presented merit close attention as a valuable reference source for local infrastructure planning and engineering projects.
基金supported by National Natural Science Foundation of China(Nos.61104072 and 11271309)
文摘This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor(PMSM) in d-q frame and its space-state equation are established. The slide model control method is used to estimate the electromotive force of PMSM under static frame, while the position of rotor and its actual speed are estimated by using phase loop lock(PLL) method. Next,using Lyapunov stability theorem, the asymptotical stability condition of the slide model observer is presented. Furthermore, based on the backstepping control theory, the PMSM rotor speed and current tracking backstepping controllers are designed, because such controllers display excellent speed tracking and anti-disturbance performance. Finally, Matlab simulation results show that the slide model observer can not only estimate the rotor position and speed of the PMSM accurately, but also ensure the asymptotical stability of the system and effective adjustment of rotor speed and current.
文摘A novel control scheme is presented by using sliding-mode control for boost converter operating in continuous conduction mode (CCM). Although the non-ideal switching condition and physical constraint of the control are considered on the base of equivalent control, the scheme is still simple. By modifying the sliding-modc errors in each switching period, the steady-state errors and chattering can be substantially reduced. Simulation results confirm the theoretical analysis and show the improvement of the converter’s start-up behavior and low sensitivity to external perturbation.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
文摘The modern nonlinear theory, bifurcation and chaos theory are used in this paper to analyze the dynamics of the Rikitake two-disk dynamo system. The mathematical model of the Rikitake system consists of three nonlinear differential equations, which found to be the same as the mathematical model of the well-known Lorenz system. The study showed that under certain value of control parameter, the system experiences a chaotic behaviour. The experienced chaotic oscillation may simulate the reversal of the Earth’s magnetic field. The main objective of this paper is to control the chaotic behaviour in Rikitake system. So, a nonlinear controller based on the slide mode control theory is designed. The study showed that the designed controller was so effective in controlling the unstable chaotic oscillations.
基金Supported by the National Key R&D Program of China(2021YFB2011300)the National Natural Science Foundation of China(52275044,52205299)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(Z23E050032)the China Postdoctoral Science Foundation(2022M710304).
文摘The operating environment of the diesel engine air path system is complex and may be affected by external random disturbances.Potentially leading to faults.This paper addresses the fault-tolerant control problem of the diesel engine air path system,assuming that the system may simultaneously be affected by actuator faults and external random disturbances,a disturbance observer-based sliding mode controller is designed.Through the linear matrix inequality technique for solving observer and controller gains,optimal gain matrices can be obtained,eliminating the manual adjustment process of controller parameters and reducing the chattering phenomenon of the sliding mode surface.Finally,the effectiveness of the proposed method is verified through simulation analysis.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金supported by the National Natural Science Foundation of China(No.62173125).
文摘In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung-mass subsystem(regarding ride comfort)and an unsprung-mass subsystem(regarding road holding),which correspond to two prescribed performance tracking problems.Subsequently,an integrated control law is designed by introducing the unsprung-mass sliding surface into the control of the sprung-mass one.To reduce chattering and stabilize the subsystems,a prescribed-time extended disturbance observer(PT-EDO)is designed,achieving the time-varying switching gain RDSMC(TVSG-RDSMC).Numerical simulations imply that the proposed TVSG-RDSMC can effectively improve ride comfort and road holding with a significantly reduced chattering.
基金supported by the National Natural Science Foundation of China(62173215)the Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24)
文摘Dear Editor,This letter presents a class of saturated sliding mode control (SMC)strategy for linear systems subject to impulsive disturbance and input saturation. To ensure the feasibility of proposed SMC under saturation, a relationship is established among attraction domain, saturation structure and control gain.
文摘For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions.
基金supported by National Natural Science Foundation of China(No.52302472)。
文摘The development of the adaptive cycle engine is a crucial direction of advanced fighter power sources in the near future.However,this new technology brings more uncertainty to the design of the control system.To address the versatile thrust demand under complex dynamic characteristics of the adaptive cycle engine,this paper proposes a direct thrust estimation and control method based on the Model-Free Adaptive Control(MFAC)algorithm.First,an improved Sliding Mode Control-MFAC(SMC-MFAC)algorithm has been developed by introducing a sliding mode variable structure into the standard Full Format Dynamic Linearization-MFAC(FFDL-MFAC)and designing self-adaptive weight coefficients.Then a trivariate double-loop direct thrust control structure with a controller-based thrust estimator and an outer command compensation loop has been established.Through thrust feedback and command correction,accurate control under multi-mode and operation conditions is achieved.The main contribution of this paper is the improved algorithm that combines the tracking capability of the MFAC and the robustness of the SMC,thus enhancing the dynamic performance.Considering the requirements of the online thrust feedback,the designed MFAC-based thrust estimator significantly speeds up the calculation.Additionally,the proposed command correction module can achieve the adaptive thrust control without affecting the operation of the inner loop.Simulations and Hardware-in-Loop(HIL)experiments have been performed on an adaptive cycle engine component-level model to investigate the estimation and control effect under different modes and health conditions.The results demonstrate that both the thrust estimation precision and operation speed are significantly improved compared with Extended Kalman Filter(EKF).Furthermore,the system can accelerate the response of the controlled plant,reduce the overshoot,and realize the thrust recovery within the safety range when the engine encounters the degradation.
文摘UAV shipboard landing poses significant challenges in terms of safety and efficiency,due to the oscillatory ship motion caused by wave interactions and wind gusts,especially in rough sea states.To solve this issue,a flight envelope constrained fixed-time control strategy is proposed to achieve a reliable UAV landing on a maneuvering ship.Firstly,a sliding data window autoregressive model is designed to predict the ship's roll and pitch motions,which are accordingly utilized to identify an appropriate quiescent period for safe landing.Subsequently,a barrier-function-based nonsingular terminal sliding mode controller is developed to eliminate the tracking errors within the identified quiescent period,while ensuring the errors remain bounded to satisfy flight envelope constraints.In particular,lumped disturbance components are estimated by integrating a fixed-time disturbance observer and compensated in the controller.The key advantage of the proposed approach is that it well balances the control requirements between precise landing position and safe landing attitude,guaranteeing both steady-state performance and transient behavior of the tracking error.Finally,comparative Gazebo simulations in different sea state scenarios are conducted to verify the satisfactory control performance.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62173107 and 12202058)the Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology(Grant No.BYESS2023344).
文摘The increasing accumulation of space debris threatens the integrity and functionality of satellites and complicates orbital operations.This paper constructs an advanced rigid-flexible coupling dynamic model for tethered satellite systems,tailored to enhance space debris management.Utilizing the nodal position finite element method,the model significantly improves the precision of simulating tether dynamics and captures the complex interactions involving satellite and debris attitude dynamics.This advancement allows for detailed examination of potential tether entanglements and provides crucial data for optimizing deorbiting processes.To overcome the limitations of conventional control techniques,a robust adaptive sliding mode control strategy is developed.This approach is specifically designed to manage the unpredictable conditions of the low-Earth orbit and ensure precise satellite attitude control,critical for successful debris removal.Validated through extensive numerical simulations,our model and control strategy demonstrate substantial improvements in operational reliability and safety,significantly enhancing the success rate of deorbiting missions.
基金supported by the National Natural Science Foundation of China No.E1102/52071108National Defense Science and Industry Bureau Stability Support Project No.JCKYS2020SXJQR-04Natural Science Foundation of Heilongjiang Province No.JJ2021JQ0075.
文摘Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFA1011803in part by Natural Science Foundation of Chongqing,China under Grant CSTB2023NSCQ-MSX0588+2 种基金in part by the Fundamental Research Funds for the Central Universities,China under Grant 2023CDJKYJH047in part by the National Natural Science Foundation of China under Grant 62273064,Grant 61991400,Grant 61991403,Grant 61933012,Grant 62250710167,Grant 62203078in part by Innovation Support Program for International Students Returning to China under Grant cx2022016.
文摘This paper addresses the lane-keeping control problem for autonomous ground vehicles subject to input saturation and uncertain system parameters.An enhanced adaptive terminal sliding mode based prescribed performance control scheme is proposed,which enables the lateral position error of the vehicle to be kept within the prescribed performance boundaries all the time.This is achieved by firstly introducing an improved performance function into the controller design such that the stringent initial condition requirements can be relaxed,which further allows the global prescribed performance control result,and then,developing a multivariable adaptive terminal sliding mode based controller such that both input saturation and parameter uncertainties are handled effectively,which further ensures the robust lane-keeping control.Finally,the proposed control strategy is validated through numerical simulations,demonstrating its effectiveness.
文摘This paper introduces a novel chattering-free terminal sliding mode control(SMC)strategy to address chaotic behavior in permanent magnet synchronous generators(PMSG)for offshore wind turbine systems.By integrating an adaptive exponential reaching law with a continuous barrier function,the proposed approach eliminates chattering and ensures robust performance under model uncertainties.The methodology combines adaptive SMC with dynamic switching to estimate and compensates for unknown uncertainties,providing smooth and stable control.Finally,the performance and effectiveness of the proposed approach are compared with those of a previous study.
基金supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500)the Academic Excellence Foundation of Beijing University of Aeronautics and Astronautics(BUAA)。
文摘Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.
基金Supported by Key R&D Project of Zhejiang(Grant No.2022C02052)。
文摘Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively.
基金supported by the Artificial Intelligence Innovation and Development Special Fund of Shanghai(No.2019RGZN01041)the National Natural Science Foundation of China(No.92048205).
文摘This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.