The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and...The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.展开更多
Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale who...Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale whole slide images(WSIs)features to predict the response to breast cancer NAC more finely.Methods:This work collected 1,670 whole slide images for training and validation sets,internal testing sets,external testing sets,and prospective testing sets of the weakly-supervised deep learning-based multi-task model(DLMM)in predicting treatment response and pCR to NAC.Our approach models two-by-two feature interactions across scales by employing concatenate fusion of single-scale feature representations,and controls the expressiveness of each representation via a gating-based attention mechanism.Results:In the retrospective analysis,DLMM exhibited excellent predictive performance for the prediction of treatment response,with area under the receiver operating characteristic curves(AUCs)of 0.869[95%confidence interval(95%CI):0.806−0.933]in the internal testing set and 0.841(95%CI:0.814−0.867)in the external testing sets.For the pCR prediction task,DLMM reached AUCs of 0.865(95%CI:0.763−0.964)in the internal testing and 0.821(95%CI:0.763−0.878)in the pooled external testing set.In the prospective testing study,DLMM also demonstrated favorable predictive performance,with AUCs of 0.829(95%CI:0.754−0.903)and 0.821(95%CI:0.692−0.949)in treatment response and pCR prediction,respectively.DLMM significantly outperformed the baseline models in all testing sets(P<0.05).Heatmaps were employed to interpret the decision-making basis of the model.Furthermore,it was discovered that high DLMM scores were associated with immune-related pathways and cells in the microenvironment during biological basis exploration.Conclusions:The DLMM represents a valuable tool that aids clinicians in selecting personalized treatment strategies for breast cancer patients.展开更多
0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide down...0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).展开更多
Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typ...Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.展开更多
The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the sheari...The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the shearing part in formation of landslide and controls the further development of landslide.The mechanical behavior of sliding zone soil under compression is a crucial factor in the stability analysis in landslides.In this paper,the sliding zone soil from a giant landslide in the biggest hydropower project area,Three Gorges Reservoir Area,is taken as the research case.The particlesize distribution of the sliding zone soil from this landslide is studied and fractal dimension is adopted as representation.Periodic saturation-drying is introduced as the affecting factor on sliding zone soil properties.The triaxial compression test is conducted to reveal the mechanical behavior of the soil,including stress-strain behavior,elastic modulus,failure stress and strength parameters.These behavior of sliding zone soils with different fractal dimensions are studied under the effects of periodic saturation-drying cycles.The normalized stress-strain curves are displayed for further calculation.The data considering saturation-drying cycles are obtained and compared with the experimental results.展开更多
Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,...Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,limiting the widespread use of this technology.In this study,the influence of rocking parameters on the friction-reduction effect was investigated using an axialetorsional dynamic model of the drillstring and an experimental apparatus for rocking-assisted slide drilling in a simulated horizontal well.The research shows that increasing the rocking speed is beneficial improving the friction-reduction effect,but there is a diminishing marginal effect.A method was proposed to optimize the rocking speed using the equivalent axial drag coefficienterocking speed curve.Under the influence of rocking,the downhole weight on bit(WOB)exhibits a sinusoidal-like variation,with the predominant frequency being twice the rocking frequency.The fluctuation amplitude of the WOB in the horizontal section has a linear relationship with the rocking-affected depth.Based on this,a method was proposed to estimate the rockingaffected depth using the fluctuation amplitude of the standpipe pressure difference.Application of this method in the drilling field has improved the rate of penetration and toolface stability,demonstrating the reliability and effectiveness of the methods proposed in this paper.展开更多
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ...Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.展开更多
Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assess...Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.展开更多
Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that s...Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.展开更多
A large number of laboratory investigations related to the permeability have been conducted on the sliding zones.Yet little attention has been paid to the particular sliding zones of the slideprone Badong Formation.He...A large number of laboratory investigations related to the permeability have been conducted on the sliding zones.Yet little attention has been paid to the particular sliding zones of the slideprone Badong Formation.Here,we experimentally investigate the permeability nature and the mechanism of seepage in the viscous sliding zone of the Huangtupo Landslide.Saturated seepage tests have been performed first with consideration of six dry densities and thirteen hydraulic gradients,in conjunction with the mercury intrusion porosimetry test and scanning electron microscopy test for the microstructure analysis after seepage.The results show that seepage in the sliding zone soil does not follow Darcy’s Law,since there is a threshold hydraulic gradient(i0)below which no flow is observed and a critical hydraulic gradient(icr)over which the hydraulic conductivity(K)tends to be stable.The percentage of bound water could be responsible for the occurrence of i0 and icr.Furthermore,pore size distributions(PSD)less than 0.6µm and between 10 and 90µm exhibit positive and negative correlations with the i0,respectively,indicating that the i0 is related to the PSD.The mechanism accounting for this result is that pore water pressure forces fine clay particles into the surrounding large pores and converts arranged particles to discretely distributed ones,thereby weakening the connectivity of pores.The seepages in the sliding zones behave differently from that in the sliding mass and sliding bed in response to the permeability.展开更多
Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activ...Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activities.The impact of the controlled-source audio-frequency magnetotelluric method on investigating landslide surfaces is assessed through numerical simulations with a finite element approach.A Dirichlet boundary condition is selected to match the truncated boundary,resulting in a remarkable improvement in simulation efficiency.Rederivation of the formulas for a layered medium adept to the controlled-source audiofrequency magnetotelluric method is necessary to determine the electromagnetic field at any location along the truncated boundary.After the reliability evaluation of the new codes,a landslide model with a slide surface is designed,and the characteristics of its electromagnetic field and the apparent resistivity are studied.Instead of the total electromagnetic field,which is strongly infl uenced by topography variation,the apparent resistivity should be used for sliding surface detection.The normalized pure anomalous electromagnetic field may also be employed to quickly assess the detectability of the sliding surface.Overall,this study demonstrates that the controlled-source audio-frequency magnetotelluric method can be employed for investigating landslides,and recommends survey parameters,including configuration,frequency range,and length of survey line in landslide exploration.展开更多
In the intelligent medical diagnosis area,Artificial Intelligence(AI)’s trustworthiness,reliability,and interpretability are critical,especially in cancer diagnosis.Traditional neural networks,while excellent at proc...In the intelligent medical diagnosis area,Artificial Intelligence(AI)’s trustworthiness,reliability,and interpretability are critical,especially in cancer diagnosis.Traditional neural networks,while excellent at processing natural images,often lack interpretability and adaptability when processing high-resolution digital pathological images.This limitation is particularly evident in pathological diagnosis,which is the gold standard of cancer diagnosis and relies on a pathologist’s careful examination and analysis of digital pathological slides to identify the features and progression of the disease.Therefore,the integration of interpretable AI into smart medical diagnosis is not only an inevitable technological trend but also a key to improving diagnostic accuracy and reliability.In this paper,we introduce an innovative Multi-Scale Multi-Branch Feature Encoder(MSBE)and present the design of the CrossLinkNet Framework.The MSBE enhances the network’s capability for feature extraction by allowing the adjustment of hyperparameters to configure the number of branches and modules.The CrossLinkNet Framework,serving as a versatile image segmentation network architecture,employs cross-layer encoder-decoder connections for multi-level feature fusion,thereby enhancing feature integration and segmentation accuracy.Comprehensive quantitative and qualitative experiments on two datasets demonstrate that CrossLinkNet,equipped with the MSBE encoder,not only achieves accurate segmentation results but is also adaptable to various tumor segmentation tasks and scenarios by replacing different feature encoders.Crucially,CrossLinkNet emphasizes the interpretability of the AI model,a crucial aspect for medical professionals,providing an in-depth understanding of the model’s decisions and thereby enhancing trust and reliability in AI-assisted diagnostics.展开更多
The great Wenchuan (汶川) earthquake induced a large quantity of landslides. They are widely distributed and caused tremendous damages. The sliding mechanism and characteristics of these earthquake-induced landslide...The great Wenchuan (汶川) earthquake induced a large quantity of landslides. They are widely distributed and caused tremendous damages. The sliding mechanism and characteristics of these earthquake-induced landslides are different from those of conventional gravity landslides. Their occurrences are apparently controlled by the powerful earthquake, and they are characterized by high potential energy sliding and ejection sliding. In this article, the earthquake-induced landslides are classified, the characteristics of the sliding and destruction of these landslides are described, and the rela- tionship between the earthquake and the landslides is analyzed. The Donghekou (东河口) landslide is used as an example to characterize fast-moving long-distance earthquake-induced ejection slippage and landslide. This research suggests that many phenomena and issues related to earthquake-induced land- slide are beyond current recognition and knowledge, and new methodologies should be adopted to consider the effect of the earthquake as the paramount factor in the development of landslides. Furthermore, the study of fast-moving long-distance earthquake-induced landslides can also shed light on the formation of old and ancient landslides.展开更多
Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that s...Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.展开更多
The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after ...The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.展开更多
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No.42090055)the National Major Scientific Instruments and Equipment Development Projects of China (Grant No.41827808)the National Nature Science Foundation of China (Grant No.42207216).
文摘The strength of the sliding zone soil determines the stability of reservoir landslides.Fluctuations in water levels cause a change in the seepage field,which serves as both the external hydrogeological environment and the internal component of a landslide.Therefore,considering the strength changes of the sliding zone with seepage effects,they correspond with the actual hydrogeological circumstances.To investigate the shear behavior of sliding zone soil under various seepage pressures,24 samples were conducted by a self-developed apparatus to observe the shear strength and measure the permeability coefficients at different deformation stages.After seepage-shear tests,the composition of clay minerals and microscopic structure on the shear surface were analyzed through X-ray and scanning electron microscope(SEM)to understand the coupling effects of seepage on strength.The results revealed that the sliding zone soil exhibited strain-hardening without seepage pressure.However,the introduction of seepage caused a significant reduction in shear strength,resulting in strain-softening characterized by a three-stage process.Long-term seepage action softened clay particles and transported broken particles into effective seepage channels,causing continuous damage to the interior structure and reducing the permeability coefficient.Increased seepage pressure decreased the peak strength by disrupting occlusal and frictional forces between sliding zone soil particles,which carried away more clay particles,contributing to an overhead structure in the soil that raised the permeability coefficient and decreased residual strength.The internal friction angle was less sensitive to variations in seepage pressure than cohesion.
基金supported by the National Natural Science Foundation of China(No.82371933)the National Natural Science Foundation of Shandong Province of China(No.ZR2021MH120)+1 种基金the Taishan Scholars Project(No.tsqn202211378)the Shandong Provincial Natural Science Foundation for Excellent Young Scholars(No.ZR2024YQ075).
文摘Objective:Early predicting response before neoadjuvant chemotherapy(NAC)is crucial for personalized treatment plans for locally advanced breast cancer patients.We aim to develop a multi-task model using multiscale whole slide images(WSIs)features to predict the response to breast cancer NAC more finely.Methods:This work collected 1,670 whole slide images for training and validation sets,internal testing sets,external testing sets,and prospective testing sets of the weakly-supervised deep learning-based multi-task model(DLMM)in predicting treatment response and pCR to NAC.Our approach models two-by-two feature interactions across scales by employing concatenate fusion of single-scale feature representations,and controls the expressiveness of each representation via a gating-based attention mechanism.Results:In the retrospective analysis,DLMM exhibited excellent predictive performance for the prediction of treatment response,with area under the receiver operating characteristic curves(AUCs)of 0.869[95%confidence interval(95%CI):0.806−0.933]in the internal testing set and 0.841(95%CI:0.814−0.867)in the external testing sets.For the pCR prediction task,DLMM reached AUCs of 0.865(95%CI:0.763−0.964)in the internal testing and 0.821(95%CI:0.763−0.878)in the pooled external testing set.In the prospective testing study,DLMM also demonstrated favorable predictive performance,with AUCs of 0.829(95%CI:0.754−0.903)and 0.821(95%CI:0.692−0.949)in treatment response and pCR prediction,respectively.DLMM significantly outperformed the baseline models in all testing sets(P<0.05).Heatmaps were employed to interpret the decision-making basis of the model.Furthermore,it was discovered that high DLMM scores were associated with immune-related pathways and cells in the microenvironment during biological basis exploration.Conclusions:The DLMM represents a valuable tool that aids clinicians in selecting personalized treatment strategies for breast cancer patients.
基金supported by the National Natural Science Foundation of China(Nos.42090054,42377192)the Scientific Research Project of Power China Huadong Engineering Corporation Limited(No.KY2022-KC-02-02)the Natural Science Foundation of Hubei Province,China(No.2022CFA002)。
文摘0 INTRODUCTION Submarine slope slides refer to a geological process occurring on submarine slopes or continental margin slopes,where a large amount of sediment or rock layers on the slope lose stability and slide downward along the sliding surface(Kamran et al.,2023;Tong et al.,2023;Hampton et al.,1996).
文摘Chronic long-segment iliac artery occlusion represents a relatively rare and particularly severe form of iliac artery disease,often associated with complex anatomical challenges.When symptomatic,these patients are typically candidates for surgical revascularization.
基金financially supported by the National Natural Science Foundation of China(Nos.42107194,42090054,42377182)the Fundamental Research Funds for the Central Universities(No.CUGL190810)the Open Foundation of Engineering Research Center of Rock-Soil Drilling&Excavation and Protection,Ministry of Education(No.201802)。
文摘The reservoir landslide undergoes periodic saturation-drying cycles affected by reservoir fluctuation in hydropower project area,leading to the irreversible impact on the landslide materials.Sliding zone is the shearing part in formation of landslide and controls the further development of landslide.The mechanical behavior of sliding zone soil under compression is a crucial factor in the stability analysis in landslides.In this paper,the sliding zone soil from a giant landslide in the biggest hydropower project area,Three Gorges Reservoir Area,is taken as the research case.The particlesize distribution of the sliding zone soil from this landslide is studied and fractal dimension is adopted as representation.Periodic saturation-drying is introduced as the affecting factor on sliding zone soil properties.The triaxial compression test is conducted to reveal the mechanical behavior of the soil,including stress-strain behavior,elastic modulus,failure stress and strength parameters.These behavior of sliding zone soils with different fractal dimensions are studied under the effects of periodic saturation-drying cycles.The normalized stress-strain curves are displayed for further calculation.The data considering saturation-drying cycles are obtained and compared with the experimental results.
基金sponsored by the National Natural Science Foundation of China,China(No.52304002).
文摘Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,limiting the widespread use of this technology.In this study,the influence of rocking parameters on the friction-reduction effect was investigated using an axialetorsional dynamic model of the drillstring and an experimental apparatus for rocking-assisted slide drilling in a simulated horizontal well.The research shows that increasing the rocking speed is beneficial improving the friction-reduction effect,but there is a diminishing marginal effect.A method was proposed to optimize the rocking speed using the equivalent axial drag coefficienterocking speed curve.Under the influence of rocking,the downhole weight on bit(WOB)exhibits a sinusoidal-like variation,with the predominant frequency being twice the rocking frequency.The fluctuation amplitude of the WOB in the horizontal section has a linear relationship with the rocking-affected depth.Based on this,a method was proposed to estimate the rockingaffected depth using the fluctuation amplitude of the standpipe pressure difference.Application of this method in the drilling field has improved the rate of penetration and toolface stability,demonstrating the reliability and effectiveness of the methods proposed in this paper.
基金supported by the opening fund of State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology(No.LP2310)the opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection at Chengdu University of Technology(No.SKLGP2023K001)+2 种基金the Shandong Provincial Key Laboratory of Ocean Engineering with grant at Ocean University of China(No.kloe200301)the National Natural Science Foundation of China(Nos.42022052,42077272 and 52108337)the Science and Technology Innovation Serve Project of Wenzhou Association for Science and Technology(No.KJFW65).
文摘Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.
基金support provided by the UK Engineering and Physical Sciences Research Council(EP/V012169/1).
文摘Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.
文摘Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.
基金supported by the National Key Scientific Instrument and Equipment Development Project of China(No.41827808)the Major Program of National Natural Science Foundation of China(No.42090055)the National Natural Science Foundation of China(Nos.42107180,42207212,42007268,42162023,and 42162025).
文摘A large number of laboratory investigations related to the permeability have been conducted on the sliding zones.Yet little attention has been paid to the particular sliding zones of the slideprone Badong Formation.Here,we experimentally investigate the permeability nature and the mechanism of seepage in the viscous sliding zone of the Huangtupo Landslide.Saturated seepage tests have been performed first with consideration of six dry densities and thirteen hydraulic gradients,in conjunction with the mercury intrusion porosimetry test and scanning electron microscopy test for the microstructure analysis after seepage.The results show that seepage in the sliding zone soil does not follow Darcy’s Law,since there is a threshold hydraulic gradient(i0)below which no flow is observed and a critical hydraulic gradient(icr)over which the hydraulic conductivity(K)tends to be stable.The percentage of bound water could be responsible for the occurrence of i0 and icr.Furthermore,pore size distributions(PSD)less than 0.6µm and between 10 and 90µm exhibit positive and negative correlations with the i0,respectively,indicating that the i0 is related to the PSD.The mechanism accounting for this result is that pore water pressure forces fine clay particles into the surrounding large pores and converts arranged particles to discretely distributed ones,thereby weakening the connectivity of pores.The seepages in the sliding zones behave differently from that in the sliding mass and sliding bed in response to the permeability.
基金supported by the Project 42374170,XDA0430101.and 2022YFF0706200.
文摘Landslides are a type of natural disaster that can cause substantial harm to humanity.Monitoring and predicting the initiation of potential landslides is critical to avoiding losses due to disasters and economic activities.The impact of the controlled-source audio-frequency magnetotelluric method on investigating landslide surfaces is assessed through numerical simulations with a finite element approach.A Dirichlet boundary condition is selected to match the truncated boundary,resulting in a remarkable improvement in simulation efficiency.Rederivation of the formulas for a layered medium adept to the controlled-source audiofrequency magnetotelluric method is necessary to determine the electromagnetic field at any location along the truncated boundary.After the reliability evaluation of the new codes,a landslide model with a slide surface is designed,and the characteristics of its electromagnetic field and the apparent resistivity are studied.Instead of the total electromagnetic field,which is strongly infl uenced by topography variation,the apparent resistivity should be used for sliding surface detection.The normalized pure anomalous electromagnetic field may also be employed to quickly assess the detectability of the sliding surface.Overall,this study demonstrates that the controlled-source audio-frequency magnetotelluric method can be employed for investigating landslides,and recommends survey parameters,including configuration,frequency range,and length of survey line in landslide exploration.
基金supported by the National Natural Science Foundation of China(Grant Numbers:62372083,62072074,62076054,62027827,62002047)the Sichuan Provincial Science and Technology Innovation Platform and Talent Program(Grant Number:2022JDJQ0039)+1 种基金the Sichuan Provincial Science and Technology Support Program(Grant Numbers:2022YFQ0045,2022YFS0220,2021YFG0131,2023YFS0020,2023YFS0197,2023YFG0148)the CCF-Baidu Open Fund(Grant Number:202312).
文摘In the intelligent medical diagnosis area,Artificial Intelligence(AI)’s trustworthiness,reliability,and interpretability are critical,especially in cancer diagnosis.Traditional neural networks,while excellent at processing natural images,often lack interpretability and adaptability when processing high-resolution digital pathological images.This limitation is particularly evident in pathological diagnosis,which is the gold standard of cancer diagnosis and relies on a pathologist’s careful examination and analysis of digital pathological slides to identify the features and progression of the disease.Therefore,the integration of interpretable AI into smart medical diagnosis is not only an inevitable technological trend but also a key to improving diagnostic accuracy and reliability.In this paper,we introduce an innovative Multi-Scale Multi-Branch Feature Encoder(MSBE)and present the design of the CrossLinkNet Framework.The MSBE enhances the network’s capability for feature extraction by allowing the adjustment of hyperparameters to configure the number of branches and modules.The CrossLinkNet Framework,serving as a versatile image segmentation network architecture,employs cross-layer encoder-decoder connections for multi-level feature fusion,thereby enhancing feature integration and segmentation accuracy.Comprehensive quantitative and qualitative experiments on two datasets demonstrate that CrossLinkNet,equipped with the MSBE encoder,not only achieves accurate segmentation results but is also adaptable to various tumor segmentation tasks and scenarios by replacing different feature encoders.Crucially,CrossLinkNet emphasizes the interpretability of the AI model,a crucial aspect for medical professionals,providing an in-depth understanding of the model’s decisions and thereby enhancing trust and reliability in AI-assisted diagnostics.
文摘The great Wenchuan (汶川) earthquake induced a large quantity of landslides. They are widely distributed and caused tremendous damages. The sliding mechanism and characteristics of these earthquake-induced landslides are different from those of conventional gravity landslides. Their occurrences are apparently controlled by the powerful earthquake, and they are characterized by high potential energy sliding and ejection sliding. In this article, the earthquake-induced landslides are classified, the characteristics of the sliding and destruction of these landslides are described, and the rela- tionship between the earthquake and the landslides is analyzed. The Donghekou (东河口) landslide is used as an example to characterize fast-moving long-distance earthquake-induced ejection slippage and landslide. This research suggests that many phenomena and issues related to earthquake-induced land- slide are beyond current recognition and knowledge, and new methodologies should be adopted to consider the effect of the earthquake as the paramount factor in the development of landslides. Furthermore, the study of fast-moving long-distance earthquake-induced landslides can also shed light on the formation of old and ancient landslides.
文摘Background The S4SLIDE project(IGCP-640)builds upon the extremely successful E-MARSHAL and IGCP-511 projects also known as the Submarine Mass Movements and Their Consequences project.S4SLIDE has a broader reach that seeks to incorporate learnings from lacustrine,coastal and subaerial landslides.As with its predecessors,the IGCP-640 project focuses on facilitating the interaction of scientists,engineers,industry and government representatives,and other parties interested in subaqueous mass movements and their geohazard potential.
文摘The study on slide stability of hydraulic structures on subbed soil was made. Using the slide test results of dragged concreting base plates on subbed soil pits, the decreased value of bearing capacity on slide after re- bound and repression influence of subbed soil was determined, and the envelope of ultimate slide shear resistance was also quantitatively determined. Due to the lack of similar mechanisms of slide stability on subbed soil and base plate of hydraulic structures, different safety coefficients for the slide stability were adopted. It was suggested to use the maximum compressive stress O'm~ of eccentric load to predict structure displacement, slide and creepy slippage of subbed soil, to determine the sliding creepy contour and limit the maximum load on subbed soil. Two hydraulic structures that had been put into operation were reviewed by this method, and the results accorded with the real conditions.