期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
YOLO-SIFD:YOLO with Sliced Inference and Fractal Dimension Analysis for Improved Fire and Smoke Detection
1
作者 Mariam Ishtiaq Jong-Un Won 《Computers, Materials & Continua》 2025年第3期5343-5361,共19页
Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the futu... Fire detection has held stringent importance in computer vision for over half a century.The development of early fire detection strategies is pivotal to the realization of safe and smart cities,inhabitable in the future.However,the development of optimal fire and smoke detection models is hindered by limitations like publicly available datasets,lack of diversity,and class imbalance.In this work,we explore the possible ways forward to overcome these challenges posed by available datasets.We study the impact of a class-balanced dataset to improve the fire detection capability of state-of-the-art(SOTA)vision-based models and propose the use of generative models for data augmentation,as a future work direction.First,a comparative analysis of two prominent object detection architectures,You Only Look Once version 7(YOLOv7)and YOLOv8 has been carried out using a balanced dataset,where both models have been evaluated across various evaluation metrics including precision,recall,and mean Average Precision(mAP).The results are compared to other recent fire detection models,highlighting the superior performance and efficiency of the proposed YOLOv8 architecture as trained on our balanced dataset.Next,a fractal dimension analysis gives a deeper insight into the repetition of patterns in fire,and the effectiveness of the results has been demonstrated by a windowing-based inference approach.The proposed Slicing-Aided Hyper Inference(SAHI)improves the fire and smoke detection capability of YOLOv8 for real-life applications with a significantly improved mAP performance over a strict confidence threshold.YOLOv8 with SAHI inference gives a mAP:50-95 improvement of more than 25%compared to the base YOLOv8 model.The study also provides insights into future work direction by exploring the potential of generative models like deep convolutional generative adversarial network(DCGAN)and diffusion models like stable diffusion,for data augmentation. 展开更多
关键词 Fire detection smoke detection class-balanced dataset you only look once(YOLO) slicing-aided hyper inference(SAHI) fractal dimension generative adversarial network(GAN) diffusion models
在线阅读 下载PDF
基于增量学习的超球支持向量机设计 被引量:2
2
作者 张曦煌 须文波 《计算机工程与应用》 CSCD 北大核心 2006年第13期66-68,76,共4页
增量学习是通过从已知样本出发对未知样本进行识别和分类,并能够继续学习的方法和原则。论文在分析了HS-SVM的理论基础后,基于Joachims的直推式SVM分类算法,提出了直推式THS-SVM算法,同时,独立提出了简单自学习的SHS-SVM学习方法。THS-... 增量学习是通过从已知样本出发对未知样本进行识别和分类,并能够继续学习的方法和原则。论文在分析了HS-SVM的理论基础后,基于Joachims的直推式SVM分类算法,提出了直推式THS-SVM算法,同时,独立提出了简单自学习的SHS-SVM学习方法。THS-SVM和SHS-SVM能够在训练过程中不断学习无标签样本的信息。实验表明将THS-SVM和SHS-SVM用于基于内容的图像检索是有效的。 展开更多
关键词 超球 支持向量机 增量学习 直推式
在线阅读 下载PDF
超逆Γ分布及其抽样算法 被引量:1
3
作者 李开灿 耿直 《数学年刊(A辑)》 CSCD 北大核心 2004年第3期337-344,共8页
关于可分图模型的Bayes推断,本文提出了超逆Γ分布,它可以作为可分的Gaussian图模型中协方差阵的共轭先验分布.在讨论了Γ分布和逆Γ的性质后,给出了超逆Γ分布的抽样算法.
关键词 可分图模型 BAYES推断 超逆Г分布
在线阅读 下载PDF
面向小目标的YOLOv5安全帽检测算法 被引量:23
4
作者 吕宗喆 徐慧 +2 位作者 杨骁 王勇 王唯鉴 《计算机应用》 CSCD 北大核心 2023年第6期1943-1949,共7页
安全帽的佩戴是工人人身安全的有力保障。针对采集的安全帽佩戴图像目标密集、像素点小、检测难度大的特点,提出一种面向安全帽的YOLOv5小目标检测算法。首先,基于YOLOv5算法优化边界框回归损失函数和置信度预测损失函数的计算方式,以... 安全帽的佩戴是工人人身安全的有力保障。针对采集的安全帽佩戴图像目标密集、像素点小、检测难度大的特点,提出一种面向安全帽的YOLOv5小目标检测算法。首先,基于YOLOv5算法优化边界框回归损失函数和置信度预测损失函数的计算方式,以提高算法在训练中对密集小目标特征的学习效果;然后,引入切片辅助微调和切片辅助推理(SAHI)对输入网络的图像进行切片处理,使得小目标对象产生更大的像素区域,进而改善网络推理与微调的效果。实验采用了工业场景中包含密集安全帽小目标的数据集进行训练。实验结果表明,改进后的算法相较于原始YOLOv5算法能将精确率提升0.26个百分点,召回率提升0.38个百分点;并且所提算法的平均精确率均值(mAP)达到了95.77%,相较于原始YOLOv5算法等几种算法提升了0.46~13.27个百分点。结果验证了切片辅助微调和SAHI的引入可以提升密集场景下小目标检测识别的精确率和置信度,减少误检漏检的情况,有效满足安全帽佩戴检测的需求。 展开更多
关键词 安全帽佩戴检测 YOLOv5算法 损失函数 切片辅助微调 切片辅助推理 小目标检测
在线阅读 下载PDF
SDaDCS Remote Sensing Target Detection Algorithm
5
作者 Meijing Gao Yunjia Xie +6 位作者 Xiangrui Fan Kunda Wang Sibo Chen Huanyu Sun Bingzhou Sun Xu Chen Ning Guan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第6期556-569,共14页
In the field of remote sensing,the rapid and accurate acquisition of the category and location of airplanes has emerged as a prominent research.However,remote sensing fuzzy imaging and complex environmental interferen... In the field of remote sensing,the rapid and accurate acquisition of the category and location of airplanes has emerged as a prominent research.However,remote sensing fuzzy imaging and complex environmental interference affect airplane detection.Besides,the inconsistency in the size of remote sensing images and the low accuracy of small target detection are crucial challenges that need to be addressed.To tackle these issues,we propose a novel network SDaDCS(SAHI-data augmentation-dilation-channel and spatial attention)based on YOLOX model and the slicing aided hyper inference(SAHI)framework,a new data augmentation technique and dilation-channel and spatial(DCS)attention mechanism.Initially,we create a remote sensing dataset for airplane targets and introduce a new data augmentation technique based on the Rotate-Mixup and mixed data augmentation to enhance data diversity.The DCS attention mechanism,which comprises the dilated convolution block,channel attention and spatial attention,is designed to bolster the feature extraction and discrimination of the network.To address the challenges arised by the difficulties of detecting small targets,we integrate the YOLOX model with the SAHI framework.Experiment results show that,when compared to the original YOLOX model,the proposed SDaDCS remote sensing target detection algorithm enhances overall accuracy by 13.6%.The experimental results validate the effectiveness of the proposed algorithm. 展开更多
关键词 remote sensing target detection SDaDCS small target detection slicing aided hyper inference(SAHI) DCS attention mechanism
在线阅读 下载PDF
基于改进YOLOv8的火焰与烟雾检测算法 被引量:6
6
作者 邓力 周进 刘全义 《清华大学学报(自然科学版)》 北大核心 2025年第4期681-689,共9页
由于火灾具有快速蔓延的特性和较高的破坏力,实现火灾的早期探测是十分必要的,针对火灾检测算法的研究也尤为重要。该文提出了一种改进的YOLOv8算法,通过集成轻量型模块SlimNeck和切片辅助推理方法SAHI,分别优化了YOLOv8算法的网络结构... 由于火灾具有快速蔓延的特性和较高的破坏力,实现火灾的早期探测是十分必要的,针对火灾检测算法的研究也尤为重要。该文提出了一种改进的YOLOv8算法,通过集成轻量型模块SlimNeck和切片辅助推理方法SAHI,分别优化了YOLOv8算法的网络结构和推理框架,将火灾数据集目标分类为火焰(fire)、烟雾(smoke)和干扰项(default)。实验结果表明,SlimNeck-YOLOv8算法比相关的先进算法具有更优的火灾检测性能,与YOLOv8模型相比,查全率(recall)增长了2.7%、平均精度(mAP)增长了0.2%,检测速度提高了35 fps,同时也降低了计算负担。在SlimNeck-YOLOv8基础上进一步优化推理框架所得的SlimNeck-YOLOv8+SAHI算法,有效改善了漏检与误检现象。该研究有助于提升火灾检测系统的速度和精度,为火灾预警工作提供了有力的技术支持。 展开更多
关键词 火焰与烟雾 改进的YOLOv8 SlimNeck 切片辅助超推理
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部