The study evaluated the feasibility of using microwave enhanced hot air heating system for simultaneous dry blanching and dehydration of mushroom slices. The technology involves application of microwave energy at the ...The study evaluated the feasibility of using microwave enhanced hot air heating system for simultaneous dry blanching and dehydration of mushroom slices. The technology involves application of microwave energy at the beginning of dehydration process to inactivate enzymes as well as to remove a certain amount of moisture at the same time and then followed by hot air drying to complete the process. The study investigated effects of different processing parameters, i.e., microwave power level and exposure time on dehydration and quality characteristics of mushroom slices. Mushroom slices were pretreated with different microwave power levels of 240, 360 and 480 W for 1, 3 and 5 min before the hot air-drying. The optimum range of the microwave power level and pretreatment time was found to be 360 W, 3 min and 360 W, 1 min in obtaining the maximum and minimum levels of response parameters.展开更多
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re...In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.展开更多
[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different ...[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.展开更多
A decellularized extracellular matrix(dECM)constitutes a pivotal biomaterial created by decellularizing the natural extracellular matrix(ECM).This material serves as a supportive medium for intricate cellular interact...A decellularized extracellular matrix(dECM)constitutes a pivotal biomaterial created by decellularizing the natural extracellular matrix(ECM).This material serves as a supportive medium for intricate cellular interactions,fostering cell growth,differentiation,and organization.However,challenges persist in decellularization,necessitating a balance between preserving the ECM structural integrity and achieving effective cellular removal.An approach to enhancing decellularization involves pre-eliminating unnecessary tissues and effectively reducing final DNA levels to lower than 50 ng/mg ECM on preprocessed tissues.Although this strategic step augments decellularization efficiency,the current manual execution method depends on the operator’s skill.To address this limitation,this study proposed an automated raw tissue slicing system that does not require tissue preparation for slicing.Through carefully controlled tissue applanation pressure and oscillatory incisions with optimized parameters,the system achieved a precision within±10µm in obtaining submillimeter-scale tissue slices of the porcine cornea while avoiding significant microscopic complications in the tissue structure,as observed by tissue histology.These findings suggested the system’s capability to streamline and automate preliminary tissue slicing operations.The efficacy of this approach for decellularization was validated by processing porcine corneas using the proposed system and subsequently decellularizing the processed tissues.DNA level analysis revealed that sliced,subdivided tissues created by this system could expedite DNA reduction even at the initial steps of decellularization,enhancing the overall decellularization procedure.展开更多
Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration ...Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration of 0.3125 mg/mL,paeonol was adequate to fully inhibit the growth of F.graminearum mycelia within 3 days.Fourier-Transform Infrared Spectroscopy(FT-IR)analysis showed that paeonol had no impact on the outer surface of F.graminearum cell walls.While propidium iodide staining,extracellular conductivity,and pH value measurements demonstrated that paeonol disrupted the cell membrane.Furthermore,lipid oxidation and osmotic stress responses were observed in F.graminearum treated with paeonol,resulting in a 47.23%rise in malondialdehyde(MDA)levels and a 515.43%increase in glycerol levels.Moreover,on the 7th day after exposure to paeonol treatment,the deoxynivalenol(DON)level was significantly reduced,measuring only onefifth of that in the control group.Finally,paeonol was shown to inhibit F.graminearum on wheat grains and steamed bread slices.These results,for the first time,revealed the inhibitory mode of action of paeonol against F.graminearum as reflected by disruption of cell membrane integrity,induction of lipid oxidation and osmotic pressure,as well as DON biosynthesis.Furthermore,this study provided scientific evidence for the potential applications of paeonol in agriculture and food industry.展开更多
Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-toler...Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme.展开更多
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u...This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.展开更多
Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resou...Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures.Nonetheless,sustaining elevated Quality of Service(QoS)in dynamic,resource-limited systems poses significant hurdles.This study introduces an innovative packet-based proactive end-to-end(ETE)resource management system that facilitates network slicing with improved resilience and proactivity.To get around the drawbacks of conventional reactive systems,we develop a cost-efficient slice provisioning architecture that takes into account limits on radio,processing,and transmission resources.The optimization issue is non-convex,NP-hard,and requires online resolution in a dynamic setting.We offer a hybrid solution that integrates an advanced Deep Reinforcement Learning(DRL)methodology with an Improved Manta-Ray Foraging Optimization(ImpMRFO)algorithm.The ImpMRFO utilizes Chebyshev chaotic mapping for the formation of a varied starting population and incorporates Lévy flight-based stochastic movement to avert premature convergence,hence facilitating improved exploration-exploitation trade-offs.The DRL model perpetually acquires optimum provisioning strategies via agent-environment interactions,whereas the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.The DRL model perpetually acquires optimum provisioning methods via agent-environment interactions,while the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.Experimental findings reveal that the proactive ETE system outperforms DRL models and non-resilient provisioning techniques.Our technique increases PSSRr,decreases average latency,and optimizes resource use.These results demonstrate that the hybrid architecture for robust,real-time,and scalable slice management in future 6G networks is feasible.展开更多
DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become m...DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment.展开更多
With the acceleration of the intelligent transformation of power systems,the requirements for communication technology are increasingly stringent.The application of 5G mobile communication technology in power communic...With the acceleration of the intelligent transformation of power systems,the requirements for communication technology are increasingly stringent.The application of 5G mobile communication technology in power communication is analyzed.In this study,5G technology features,application principles,and practical strategies are discussed,and methods such as network slicing,customized deployment,edge computing collaborative application,communication equipment integration and upgrading,and multi-technology collaboration and complementation are proposed.It aims to effectively improve the efficiency,reliability,and security of power communication,solve the problem that traditional communication technology is difficult to meet the diversified needs of power business,and achieve the effect of optimizing the power communication network and supporting the intelligent development of the power system.展开更多
BACKGROUND: Nikethamide, a respiratory center stimulant, is widely used in China. However, its effects on the central nervous system and medullary respiratory center remain poorly understood. OBJECTIVE: To investiga...BACKGROUND: Nikethamide, a respiratory center stimulant, is widely used in China. However, its effects on the central nervous system and medullary respiratory center remain poorly understood. OBJECTIVE: To investigate the influence of nikethamide on inspiratory neuron discharge in the medial region of the nucleus retrofacialis in neonatal rats, based on the observations addressing rhythmic respiratory discharge generated by the basic medullary respiratory center and various respiration neuron discharges in brain slices. DESIGN, TIME AND SETTING: A controlled, observational study utilizing in vitro neuroelectrophysiology was performed at the Department of Physiology in Southern Medical University between September and December in 2007. MATERIALS: Nikethamide was purchased from Sigma, USA; BL-420E biological signal collection and manaclement system was provided by Chengdu TME Technology, China.METHODS: Isolated medulla-spinal cord preparations were collected from neonatal Sprague Dawley rats, aged 1-3 days. Tissues were divided to include the medial region of the nucleus retrofacialis, ventral respiratory, and dorsal respiratory groups. Subsequently, modified Kreb's solution and 5 μg/mL nikethamide-containing modified Kreb's solution were consecutively perfused into the medial region of the nucleus retrofacialis in neonatal rat brain slices. MAIN OUTCOME MEASURES: Hypoglossal nerve root respiratory-related rhythmic discharge activities and inspiratory neuron discharges were recorded with an adsorption electrode and microelectrode. RESULTS Nikethamide resulted in prolonged inspiratory neuron discharge time, shortened respiratory cycle and expiratory time. Nikethamide intervention resulted in enhanced integral amplitude of some inspiratory neurons with no changes in discharge frequency or increased discharge frequency in remaining inspiratory neurons with no changes in integral amplitude. CONCLUSION: Nikethamide excites inspiratory neurons in the basic rhythmic respiration and medullary respiratory center, in addition to increased inspiratory neuron and neural network excitability.展开更多
Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots o...Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots of 2-3 nm. It was proposed the surfactant molecules on ZnSe quantum dots played a key role in the self-assembly process.展开更多
Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor la, a transcription factor, is of g...Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor la, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage There is little evidence of direct regulatory effects of hypoxia-inducible factor le on oligodendrocyte lineage gene-l. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor la or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor la and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor la, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor la levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor la can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.展开更多
An attempt was made to preserve mango slices by treating with 2% calcium chloride solution followed by dipping into sugar syrup of different concentrations i.e. 50°, 60° and 70 °Brix respectively. The t...An attempt was made to preserve mango slices by treating with 2% calcium chloride solution followed by dipping into sugar syrup of different concentrations i.e. 50°, 60° and 70 °Brix respectively. The treated slices were subjected for drying in different modes of drying (oven, microwave oven and cabinet tray drying) and analyzed for various physico-chemical and organoleptic quality characteristics. The study revealed that the osmo-air dried slices of mango produced with partial dehydration facilitated by osmotic agent (sugar syrup of 60 °Brix. A fruit: sugar syrup ratio of 1:4 (w/v) for 18 h at 40 ℃ temperature) followed by mechanical drying showed superiority in sensorial quality attributes over other concentrations of ingredients and the rest of the modes of drying. The good quality osmotically dehydrated mango slices could be preserved with maximum retentions of vitamins with better dehydration, rehydration and sensorial quality characteristics.展开更多
Background: Although a large number of studies have confirmed that the different levels of reactive oxygen species (ROS) in cytoplasm and nucleus have effects on cell growth, proliferation, differentiation and apoptos...Background: Although a large number of studies have confirmed that the different levels of reactive oxygen species (ROS) in cytoplasm and nucleus have effects on cell growth, proliferation, differentiation and apoptosis, the exact mechanism of ROS action is unclear. An important reason is that the production and degradation time of ROS in cells is very short, and therefore it’s difficult to understand the mechanism of action based on the traditional molecular action process through the ROS diffusion and target binding. Methods: The fresh liver tissue slices were prepared and the nuclei of hepatocytes were separated from Kunming mice according to the reported method. Liver tissue slices and hepatocyte nuclei were perfused with extracellular or intracellular fluids containing different concentrations of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and real-time imaging monitoring of biophotonic emission was carried out using an ultra-weak biophoton imaging system. Results: The results showed that the continuous perfusion with different concentrations of H<sub>2</sub>O<sub>2</sub> (300, 400 and 500 μM, respectively) resulted in significant increase of biophotonic emissions, presenting a concentration-dependent effect in liver tissue slices and achieving the maximum effect at 400 μM, while the significant enhancement was found after 500 μM treatment on the hepatocyte nuclei. Conclusion: This study suggests that ROS generated in cells may achieve its physiological and pathological effects via biophotonic emissions, which provides a new quantum biological mechanism of ROS, while the detailed clarification requires further research.展开更多
A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The t...A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The test damping device is made up of combined magnetorheological damper,amplitude controller,signal collecting device,computer software for dynamic analysis,etc.When a zeromean and non-Gaussian white noise interfere with the device,a time series autoregressive(AR) model is conducted by using the sampled experimental data.Trispectrum and its slices analysis are emerging as a new powerful technique in signal processing,which is put forward for investigating the dynamic characteristics of the magnetorheological vibrant device.The present of trispectrum and its slices analysis change with the variation of controllable working magnetic field of the damper correspondingly.It is indicated that AR trispectrum and its slices analysis methods are feasible and effective for investigation of magnetorheological vibrant device.展开更多
Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown. In this study, Olig-...Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown. In this study, Olig-1 mRNA and protein expressions were analyzed by in situ hybridization and immunohistochemistry, to determine the expression profile of Olig-1 in rat brain slices exposed to hypoxia and ischemia. Brains were obtained from 2-day-old Sprague-Dawley rats, and sections were randomly assigned to control and hypoxia/ischemia groups. Hematoxylin-eosin staining revealed karyorrhexis and karyopyknosis in cells from the hypoxia/ischemia group. Under electron microscopy, mitochondria swelling and neuropil edema were observed in the hypoxiaJischemia group. Olig-1 mRNA and protein expressions were increased at 1 day after hypoxia and ischemia treatment. These results suggest that in situ hybridization and immunohistochemistry could be used simultaneously to detect mRNA and protein expression in brain slices.展开更多
Objective To establish a fast and sensitive method for the detection of 8-hydroxy-2’-deoxyguanosine (8-OHdG) in precision-cut rat liver slices by HPLC-MS/MS and to investigate isoniazid (INH) -induced oxidative D...Objective To establish a fast and sensitive method for the detection of 8-hydroxy-2’-deoxyguanosine (8-OHdG) in precision-cut rat liver slices by HPLC-MS/MS and to investigate isoniazid (INH) -induced oxidative DNA damage. Methods Precision-cut liver slices (300 μm) were prepared from male rats, and incubated with INH (0.018 mol/L) for 2 h after 1 h preincubation. DNA in the slices was extracted and digested into free nucleosides at 37℃ . The samples were injected into HPLC-MS/MS after the proteins were removed. The level of oxidative DNA damage was estimated using the ratio of 8-OHdG to deoxyguanosine (dG). Results The limit of detection of 8-OHdG was 1 ng/mL (S/N=3) and the intra-assay relative standard variation was 3.38% when one transition 284.3/168.4 was used as a quantifier and another two transitions 284.3/140.2, 306.1/190.2 as qualifiers. 8-OHdG and dG were well separated, as indicated by elution at 10.02 and 7.37 min, respectively. INH significantly increased the ratio of 8-OHdG to dG in rat liver slices (P〈0.05). Conclusion 8-OHdG in precision-cut liver slices could be sensitively determined by HPLC-MS/MS. HPLC-MS/MS coupled with precision-cut tissue slices is a fast and reliable analytical technique to evaluate oxidative DNA damage of target tissues caused by procarcinogens and cytotoxins.展开更多
This study aimed to evaluate the integration of transplanted choroidal plexus epithelial cells with organotypic spinal cord slices.Organotypic spinal cord slices,normally cultured for 6 days,were divided into control ...This study aimed to evaluate the integration of transplanted choroidal plexus epithelial cells with organotypic spinal cord slices.Organotypic spinal cord slices,normally cultured for 6 days,were divided into control group(Ctrl)and transplanted group(T).The choroidal plexus epithelial cells were dissociated and primary cultured(C group).The choroidal plexus epithelial cells cultured for 6–7 days were labeled by 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanineperchlorate(CM-Dil),and were identified by transthyretin(TTR)in immunocytochemistry.They were adjusted to the density of 0.5–1×107/ml,then 2μl cells suspension were transplanted to the spinal cord slices in the T group.The same amount of basal medium was dripped on the spinal cord slices in the Ctrl group.After 14 days of transplantation,the differentiations into neurons and astrocytes,and the synapses were identified by immunofluorescence histochemistry.At the same time,the ratios of cell differentiations and synapses in new system,and the changes of MAPK signaling pathway were tested by western blotting.The choroid plexus epithelial cells were well labeled by CM-Dil and were immune-stained by TTR in immunocytochemistry.The choroid plexus epithelial cells bodies were small when transplanted on the spinal cord slices,but big when transplanted on the polyester membrane inserts.The transplanted cells could differentiate into astrocytes,and possibly differentiate into neurons,and there were a large number of synaptophysin positive vesicles between transplanted cells and organotypic spinal cord slices in immunofluorescence histochemistry.The levels of GFAP,TUB-III and synaptophysin in the T group were higher than which in the Ctrl and C groups in western blotting(P<0.05).And the ratios of p-JNK/JNK and p-P38/P38 in the T group were significantly lower than which in the Ctrl and C groups(P<0.05).But the ratio of p-ERK/ERK in the three groups was of no significant difference.The transplanted choroidal plexus epithelial cells can integrate with organotypic spinal cord slices into a new system.展开更多
Summary: The diagnostic value of 16-slices spiral computed tomography (CT) for portal vein disorders was evaluated. Forty-one patients were scanned by the 16-slices spiral-CT. The celiac trunk, portal vein and their ...Summary: The diagnostic value of 16-slices spiral computed tomography (CT) for portal vein disorders was evaluated. Forty-one patients were scanned by the 16-slices spiral-CT. The celiac trunk, portal vein and their branches were reconstructed by volume rendering (VR), multiplanar volume reconstruction (MPVR) and maximum intensity projection (MIP) technique, and the results were compared with digital subtraction angiography (DSA). VR, MPVR and MIP could display celiac trunk, portal vein, inferior vena cava and their branches and extent of portal vein-vena cava shunt, portal vein emboli and the fistula of hepatic artery-portal vein. The results from 16-slices CT were better than DSA and identical with pathologic ones. The vessel three-dimension reconstruction technique of 16-slices spiral CT is valuable for evaluating the portal systemic disorders.展开更多
文摘The study evaluated the feasibility of using microwave enhanced hot air heating system for simultaneous dry blanching and dehydration of mushroom slices. The technology involves application of microwave energy at the beginning of dehydration process to inactivate enzymes as well as to remove a certain amount of moisture at the same time and then followed by hot air drying to complete the process. The study investigated effects of different processing parameters, i.e., microwave power level and exposure time on dehydration and quality characteristics of mushroom slices. Mushroom slices were pretreated with different microwave power levels of 240, 360 and 480 W for 1, 3 and 5 min before the hot air-drying. The optimum range of the microwave power level and pretreatment time was found to be 360 W, 3 min and 360 W, 1 min in obtaining the maximum and minimum levels of response parameters.
文摘In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors.
文摘[Objective] The aim was to investigate the effects of different drying temperatures on the physiochemical properties and antioxidant activity of balsam pear slices. [Method] Balsam pear slices were dried at different hot air temperatures, 40, 50, 60, 70 and 80 ℃. [Result] The polyphenols content was highest (2.83 mg/g) in the balsam pear slices dried at 50 ℃, and the flavonoids content was highest (2.584 mg/g) in those dried at 60 ℃. Different drying temperatures had a great impact on the antioxidant capacity of polyphenols in balsam pear. The balsam pear slices dried at 50 ℃ showed the strongest capacity for scavenging DPPH free radicals with IC50 of 0.015 mg/ml, and those dried at 80 ℃ showed the strongest capacity for removing ABTS free radicals with IC50 of 0.0689 mg/ml. [Conclusion] The hot air temperature of 50 ℃ had the least impact on the quality of balsam pear slices.
基金supported by the Alchemist Project 1415180884(No.20012378,Development of Meta Soft Organ Module Manufacturing Technology without Immunity Rejection and Module Assembly Robot System)funded by the Ministry of Trade,Industry&Energy(MOTIE,Republic of Korea)the Technology Development Program(No.S3318933)funded by the Ministry of SMEs and Startups(MSS,Republic of Korea).
文摘A decellularized extracellular matrix(dECM)constitutes a pivotal biomaterial created by decellularizing the natural extracellular matrix(ECM).This material serves as a supportive medium for intricate cellular interactions,fostering cell growth,differentiation,and organization.However,challenges persist in decellularization,necessitating a balance between preserving the ECM structural integrity and achieving effective cellular removal.An approach to enhancing decellularization involves pre-eliminating unnecessary tissues and effectively reducing final DNA levels to lower than 50 ng/mg ECM on preprocessed tissues.Although this strategic step augments decellularization efficiency,the current manual execution method depends on the operator’s skill.To address this limitation,this study proposed an automated raw tissue slicing system that does not require tissue preparation for slicing.Through carefully controlled tissue applanation pressure and oscillatory incisions with optimized parameters,the system achieved a precision within±10µm in obtaining submillimeter-scale tissue slices of the porcine cornea while avoiding significant microscopic complications in the tissue structure,as observed by tissue histology.These findings suggested the system’s capability to streamline and automate preliminary tissue slicing operations.The efficacy of this approach for decellularization was validated by processing porcine corneas using the proposed system and subsequently decellularizing the processed tissues.DNA level analysis revealed that sliced,subdivided tissues created by this system could expedite DNA reduction even at the initial steps of decellularization,enhancing the overall decellularization procedure.
基金support from the Grain,Oil,and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province(GO202206)the Cultivation Program for Young Backbone Teachers at Henan University of Technology+3 种基金the Key R&D Projects in Henan Province(231111113300)Double First-Class Discipline Construction Program of Henan University of Technology(0517-24410014)National Key Research and Development Program of China(2023YFF1104600)Joint Research Fund for science and technology R&D Projects of Henan Province(225200810066).
文摘Fusarium graminearum(F.graminearum)is a severe phytopathogen threatening agriculture production and food security.Paeonol,serves as a plant-derived natural component,is a promising antifungal agent.At a concentration of 0.3125 mg/mL,paeonol was adequate to fully inhibit the growth of F.graminearum mycelia within 3 days.Fourier-Transform Infrared Spectroscopy(FT-IR)analysis showed that paeonol had no impact on the outer surface of F.graminearum cell walls.While propidium iodide staining,extracellular conductivity,and pH value measurements demonstrated that paeonol disrupted the cell membrane.Furthermore,lipid oxidation and osmotic stress responses were observed in F.graminearum treated with paeonol,resulting in a 47.23%rise in malondialdehyde(MDA)levels and a 515.43%increase in glycerol levels.Moreover,on the 7th day after exposure to paeonol treatment,the deoxynivalenol(DON)level was significantly reduced,measuring only onefifth of that in the control group.Finally,paeonol was shown to inhibit F.graminearum on wheat grains and steamed bread slices.These results,for the first time,revealed the inhibitory mode of action of paeonol against F.graminearum as reflected by disruption of cell membrane integrity,induction of lipid oxidation and osmotic pressure,as well as DON biosynthesis.Furthermore,this study provided scientific evidence for the potential applications of paeonol in agriculture and food industry.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter proposes a dynamic switching soft slicing strategy for industrial mixed traffic in 5G networks. Considering two types of traffic, periodic delay-sensitive (PDS) traffic and sporadic delay-tolerant (SDT) traffic, we design a dynamic switching strategy based on a traffic-Qo S-aware soft slicing (TQASS) scheme and a resource-efficiency-aware soft slicing (REASS) scheme.
基金supported by an Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(RS-2024-00438156,Development of Security Resilience Technology Based on Network Slicing Services in a 5G Specialized Network).
文摘This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.
文摘Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures.Nonetheless,sustaining elevated Quality of Service(QoS)in dynamic,resource-limited systems poses significant hurdles.This study introduces an innovative packet-based proactive end-to-end(ETE)resource management system that facilitates network slicing with improved resilience and proactivity.To get around the drawbacks of conventional reactive systems,we develop a cost-efficient slice provisioning architecture that takes into account limits on radio,processing,and transmission resources.The optimization issue is non-convex,NP-hard,and requires online resolution in a dynamic setting.We offer a hybrid solution that integrates an advanced Deep Reinforcement Learning(DRL)methodology with an Improved Manta-Ray Foraging Optimization(ImpMRFO)algorithm.The ImpMRFO utilizes Chebyshev chaotic mapping for the formation of a varied starting population and incorporates Lévy flight-based stochastic movement to avert premature convergence,hence facilitating improved exploration-exploitation trade-offs.The DRL model perpetually acquires optimum provisioning strategies via agent-environment interactions,whereas the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.The DRL model perpetually acquires optimum provisioning methods via agent-environment interactions,while the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.Experimental findings reveal that the proactive ETE system outperforms DRL models and non-resilient provisioning techniques.Our technique increases PSSRr,decreases average latency,and optimizes resource use.These results demonstrate that the hybrid architecture for robust,real-time,and scalable slice management in future 6G networks is feasible.
基金supported by the National Science and Technology Council,Taiwan with grant numbers NSTC 112-2221-E-992-045,112-2221-E-992-057-MY3,and 112-2622-8-992-009-TD1.
文摘DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment.
文摘With the acceleration of the intelligent transformation of power systems,the requirements for communication technology are increasingly stringent.The application of 5G mobile communication technology in power communication is analyzed.In this study,5G technology features,application principles,and practical strategies are discussed,and methods such as network slicing,customized deployment,edge computing collaborative application,communication equipment integration and upgrading,and multi-technology collaboration and complementation are proposed.It aims to effectively improve the efficiency,reliability,and security of power communication,solve the problem that traditional communication technology is difficult to meet the diversified needs of power business,and achieve the effect of optimizing the power communication network and supporting the intelligent development of the power system.
基金the National Natural Science Foundation of China,No.30570670the Natural Science Foundation of Guangdong Province,No.5004714
文摘BACKGROUND: Nikethamide, a respiratory center stimulant, is widely used in China. However, its effects on the central nervous system and medullary respiratory center remain poorly understood. OBJECTIVE: To investigate the influence of nikethamide on inspiratory neuron discharge in the medial region of the nucleus retrofacialis in neonatal rats, based on the observations addressing rhythmic respiratory discharge generated by the basic medullary respiratory center and various respiration neuron discharges in brain slices. DESIGN, TIME AND SETTING: A controlled, observational study utilizing in vitro neuroelectrophysiology was performed at the Department of Physiology in Southern Medical University between September and December in 2007. MATERIALS: Nikethamide was purchased from Sigma, USA; BL-420E biological signal collection and manaclement system was provided by Chengdu TME Technology, China.METHODS: Isolated medulla-spinal cord preparations were collected from neonatal Sprague Dawley rats, aged 1-3 days. Tissues were divided to include the medial region of the nucleus retrofacialis, ventral respiratory, and dorsal respiratory groups. Subsequently, modified Kreb's solution and 5 μg/mL nikethamide-containing modified Kreb's solution were consecutively perfused into the medial region of the nucleus retrofacialis in neonatal rat brain slices. MAIN OUTCOME MEASURES: Hypoglossal nerve root respiratory-related rhythmic discharge activities and inspiratory neuron discharges were recorded with an adsorption electrode and microelectrode. RESULTS Nikethamide resulted in prolonged inspiratory neuron discharge time, shortened respiratory cycle and expiratory time. Nikethamide intervention resulted in enhanced integral amplitude of some inspiratory neurons with no changes in discharge frequency or increased discharge frequency in remaining inspiratory neurons with no changes in integral amplitude. CONCLUSION: Nikethamide excites inspiratory neurons in the basic rhythmic respiration and medullary respiratory center, in addition to increased inspiratory neuron and neural network excitability.
文摘Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots of 2-3 nm. It was proposed the surfactant molecules on ZnSe quantum dots played a key role in the self-assembly process.
基金supported by the National Natural Science Foundation of China,No. 81241022the Natural Science Foundation of Beijing,No. 7072023,7122045
文摘Oligodendrocyte lineage gene-1 expressed in oligodendrocytes may trigger the repair of neuronal myelin impairment, and play a crucial role in myelin repair. Hypoxia-inducible factor la, a transcription factor, is of great significance in premature infants with hypoxic-ischemic brain damage There is little evidence of direct regulatory effects of hypoxia-inducible factor le on oligodendrocyte lineage gene-l. In this study, brain slices of Sprague-Dawley rats were cultured and subjected to oxygen-glucose deprivation. Then, slices were transfected with hypoxia-inducible factor la or oligodendrocyte lineage gene-1. The expression levels of hypoxia-inducible factor la and oligodendrocyte lineage gene-1 were significantly up-regulated in rat brains prior to transfection, as detected by immunohistochemical staining. Eight hours after transfection of slices with hypoxia-inducible factor la, oligodendrocyte lineage gene-1 expression was upregulated, and reached a peak 24 hours after transfection. Oligodendrocyte lineage gene-1 transfection induced no significant differences in hypoxia-inducible factor la levels in rat brain tissues with oxygen-glucose deprivation. These experimental findings indicate that hypoxia-inducible factor la can regulate oligodendrocyte lineage gene-1 expression in hypoxic brain tissue, thus repairing the neural impairment.
文摘An attempt was made to preserve mango slices by treating with 2% calcium chloride solution followed by dipping into sugar syrup of different concentrations i.e. 50°, 60° and 70 °Brix respectively. The treated slices were subjected for drying in different modes of drying (oven, microwave oven and cabinet tray drying) and analyzed for various physico-chemical and organoleptic quality characteristics. The study revealed that the osmo-air dried slices of mango produced with partial dehydration facilitated by osmotic agent (sugar syrup of 60 °Brix. A fruit: sugar syrup ratio of 1:4 (w/v) for 18 h at 40 ℃ temperature) followed by mechanical drying showed superiority in sensorial quality attributes over other concentrations of ingredients and the rest of the modes of drying. The good quality osmotically dehydrated mango slices could be preserved with maximum retentions of vitamins with better dehydration, rehydration and sensorial quality characteristics.
文摘Background: Although a large number of studies have confirmed that the different levels of reactive oxygen species (ROS) in cytoplasm and nucleus have effects on cell growth, proliferation, differentiation and apoptosis, the exact mechanism of ROS action is unclear. An important reason is that the production and degradation time of ROS in cells is very short, and therefore it’s difficult to understand the mechanism of action based on the traditional molecular action process through the ROS diffusion and target binding. Methods: The fresh liver tissue slices were prepared and the nuclei of hepatocytes were separated from Kunming mice according to the reported method. Liver tissue slices and hepatocyte nuclei were perfused with extracellular or intracellular fluids containing different concentrations of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and real-time imaging monitoring of biophotonic emission was carried out using an ultra-weak biophoton imaging system. Results: The results showed that the continuous perfusion with different concentrations of H<sub>2</sub>O<sub>2</sub> (300, 400 and 500 μM, respectively) resulted in significant increase of biophotonic emissions, presenting a concentration-dependent effect in liver tissue slices and achieving the maximum effect at 400 μM, while the significant enhancement was found after 500 μM treatment on the hepatocyte nuclei. Conclusion: This study suggests that ROS generated in cells may achieve its physiological and pathological effects via biophotonic emissions, which provides a new quantum biological mechanism of ROS, while the detailed clarification requires further research.
基金Project(2005H035) supported by Fujian Province of China
文摘A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The test damping device is made up of combined magnetorheological damper,amplitude controller,signal collecting device,computer software for dynamic analysis,etc.When a zeromean and non-Gaussian white noise interfere with the device,a time series autoregressive(AR) model is conducted by using the sampled experimental data.Trispectrum and its slices analysis are emerging as a new powerful technique in signal processing,which is put forward for investigating the dynamic characteristics of the magnetorheological vibrant device.The present of trispectrum and its slices analysis change with the variation of controllable working magnetic field of the damper correspondingly.It is indicated that AR trispectrum and its slices analysis methods are feasible and effective for investigation of magnetorheological vibrant device.
基金the National Natural Science Foundation of China, No. 30872778the Natural Science Foundation of Beijing City, No. 7072023Clinical Basic Corporation Foundation of Capital Medi-cal University, No. 2006jl18
文摘Numerous studies have confirmed that oligodendrocyte transcription factor 1 (Olig-1) is vital for myelin repair. However, the effects of hypoxia and ischemia on Olig-1 expression remain unknown. In this study, Olig-1 mRNA and protein expressions were analyzed by in situ hybridization and immunohistochemistry, to determine the expression profile of Olig-1 in rat brain slices exposed to hypoxia and ischemia. Brains were obtained from 2-day-old Sprague-Dawley rats, and sections were randomly assigned to control and hypoxia/ischemia groups. Hematoxylin-eosin staining revealed karyorrhexis and karyopyknosis in cells from the hypoxia/ischemia group. Under electron microscopy, mitochondria swelling and neuropil edema were observed in the hypoxiaJischemia group. Olig-1 mRNA and protein expressions were increased at 1 day after hypoxia and ischemia treatment. These results suggest that in situ hybridization and immunohistochemistry could be used simultaneously to detect mRNA and protein expression in brain slices.
基金This research was supported by the National Natural Science Foundation of China (No. 30600773).
文摘Objective To establish a fast and sensitive method for the detection of 8-hydroxy-2’-deoxyguanosine (8-OHdG) in precision-cut rat liver slices by HPLC-MS/MS and to investigate isoniazid (INH) -induced oxidative DNA damage. Methods Precision-cut liver slices (300 μm) were prepared from male rats, and incubated with INH (0.018 mol/L) for 2 h after 1 h preincubation. DNA in the slices was extracted and digested into free nucleosides at 37℃ . The samples were injected into HPLC-MS/MS after the proteins were removed. The level of oxidative DNA damage was estimated using the ratio of 8-OHdG to deoxyguanosine (dG). Results The limit of detection of 8-OHdG was 1 ng/mL (S/N=3) and the intra-assay relative standard variation was 3.38% when one transition 284.3/168.4 was used as a quantifier and another two transitions 284.3/140.2, 306.1/190.2 as qualifiers. 8-OHdG and dG were well separated, as indicated by elution at 10.02 and 7.37 min, respectively. INH significantly increased the ratio of 8-OHdG to dG in rat liver slices (P〈0.05). Conclusion 8-OHdG in precision-cut liver slices could be sensitively determined by HPLC-MS/MS. HPLC-MS/MS coupled with precision-cut tissue slices is a fast and reliable analytical technique to evaluate oxidative DNA damage of target tissues caused by procarcinogens and cytotoxins.
基金This study was supported by National Natural Science Foundation of China(81471247).
文摘This study aimed to evaluate the integration of transplanted choroidal plexus epithelial cells with organotypic spinal cord slices.Organotypic spinal cord slices,normally cultured for 6 days,were divided into control group(Ctrl)and transplanted group(T).The choroidal plexus epithelial cells were dissociated and primary cultured(C group).The choroidal plexus epithelial cells cultured for 6–7 days were labeled by 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanineperchlorate(CM-Dil),and were identified by transthyretin(TTR)in immunocytochemistry.They were adjusted to the density of 0.5–1×107/ml,then 2μl cells suspension were transplanted to the spinal cord slices in the T group.The same amount of basal medium was dripped on the spinal cord slices in the Ctrl group.After 14 days of transplantation,the differentiations into neurons and astrocytes,and the synapses were identified by immunofluorescence histochemistry.At the same time,the ratios of cell differentiations and synapses in new system,and the changes of MAPK signaling pathway were tested by western blotting.The choroid plexus epithelial cells were well labeled by CM-Dil and were immune-stained by TTR in immunocytochemistry.The choroid plexus epithelial cells bodies were small when transplanted on the spinal cord slices,but big when transplanted on the polyester membrane inserts.The transplanted cells could differentiate into astrocytes,and possibly differentiate into neurons,and there were a large number of synaptophysin positive vesicles between transplanted cells and organotypic spinal cord slices in immunofluorescence histochemistry.The levels of GFAP,TUB-III and synaptophysin in the T group were higher than which in the Ctrl and C groups in western blotting(P<0.05).And the ratios of p-JNK/JNK and p-P38/P38 in the T group were significantly lower than which in the Ctrl and C groups(P<0.05).But the ratio of p-ERK/ERK in the three groups was of no significant difference.The transplanted choroidal plexus epithelial cells can integrate with organotypic spinal cord slices into a new system.
基金ThisprojectwassupportedbyagrantfromtheNaturalSci encesFoundationofHubeiProvince (No .2 0 0 2AB130 ) .
文摘Summary: The diagnostic value of 16-slices spiral computed tomography (CT) for portal vein disorders was evaluated. Forty-one patients were scanned by the 16-slices spiral-CT. The celiac trunk, portal vein and their branches were reconstructed by volume rendering (VR), multiplanar volume reconstruction (MPVR) and maximum intensity projection (MIP) technique, and the results were compared with digital subtraction angiography (DSA). VR, MPVR and MIP could display celiac trunk, portal vein, inferior vena cava and their branches and extent of portal vein-vena cava shunt, portal vein emboli and the fistula of hepatic artery-portal vein. The results from 16-slices CT were better than DSA and identical with pathologic ones. The vessel three-dimension reconstruction technique of 16-slices spiral CT is valuable for evaluating the portal systemic disorders.