Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fif...Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fifth order Stokes wave and stream function wave by using Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives wind-driven slanting profile wave by using UVPWGW. Its feature is that under the action of wind pressure, the wave profile is not symmetrized to a vertical axis, but that it is in the forward slanting form.展开更多
The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question o...The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question of optimizing the cutter for slanting knife cutting operation is addressed.Then the general differential equations for the optimum cutter are obtained,and analytic solutions for the workpiece,the contour of which consists of straight lines and arcs,are obtained.A method for solving the general equations is also presented.The cutting force and breaking noise will be minimized for a given slanting cutter height and workpiece if the optimum cutter is employed.展开更多
A new passive control approach,utilizing bionic slanting riblets,is employed to mitigate the flow close to the blade endwall in a linear cascade,and its effectiveness and mechanism in controlling corner separation are...A new passive control approach,utilizing bionic slanting riblets,is employed to mitigate the flow close to the blade endwall in a linear cascade,and its effectiveness and mechanism in controlling corner separation are investigated through numerical simulations.The slanting riblets are positioned at the endwall upstream of the cascade channel,and the influence of riblet height,yaw angle and relative position on the control of corner separation is investigated.The findings indicate that the application of slanting riblets can efficiently counteract corner separation across the stable operational range.Specifically,the introduction of riblets with a height of merely 0.1 times the boundary layer thickness results in a significant reduction in total pressure loss by up to 14.53%,while simultaneously enhancing the static pressure coefficient by 21.74%.Flow analysis reveals that minute vortices produced within the riblet channels tend to coalesce,forming a potent large-scale vortex near the boundary layer's base downstream.This phenomenon results in reduced additional losses compared to conventional vortex generators.Additionally,the induced vortex promotes enhanced mixing between the mainstream flow and boundary layer,inhibiting the lateral displacement of low-energy fluids within the endwall boundary layer.Consequently,this delays the onset of separation vortex formation and eliminates vortex rings in the corner region,ultimately enhancing the aerodynamic efficiency of the cascade.展开更多
The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source S...The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source SdP sampling from a large global dataset,we image topographies of transition zone discontinuities such as the 410-km and 660-km discontinuities(410 and 660)beneath the Kamchatka and conduct cross-section comparisons with the seismicity.Compared with the IASP91 model,the 410 exhibits apparent uplifts of 45-65 km with an average of 55 km in a horizontal width of~130 km,corresponding to lowtemperature anomalies of 750-1083 K with an average of 916 K.In contrast,the 660 shows depressions of 15-37 km with an average of 25 km together with downward deflections in a width of~260 km,implying low-temperature anomalies of 161-397 K with an average of 268 K.Thus,we confirm a thickened MTZ with a thickness of 325-345 km around the cold descending Pacific slab.We suggest that topographic patterns of transition zone discontinuities imply a Pacific slab that has been significantly heated in the MTZ with broadened thermal effects on the 660.When considered along with other studies,we infer that the slab is possibly heated by hot mantle flows around the torn slab window extended to at least the MTZ range,thus inducing variations in thermal and rheological properties of the slab.Our seismic results can provide more insight into slab dynamics in the northwestern Pacific.展开更多
To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can b...To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can build constructive primaries and destructive ghosts. To evaluate the attenuation of ghosts, the normalized squared error of the spectrum of the actual vs the expected signature is computed. We used a typical 680 cu.in airgun string and found via simulations that a depth interval of 1 or 1.5 m between airguns is optimum when considering deghosting performance and operational feasibility. When more subarrays are combined, preliminary simulations are necessary to determine the optimum depth combination. The frequency notches introduced by the excess use of subarrays may negatively affect the deghosting performance. Two or three slanted subarrays can be combined to remove the ghost effect. The sequence combination may partly affect deghosting but this can be eliminated by matched filtering. Directivity comparison shows that a multi-depth slanted source can significantly attenuate the notches and widen the energy transmission stability area.展开更多
The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) a...The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) and slant factors at the pierce points of satellite signals are the reasons of the residual error. An improved pseudorange differential approach is proposed and the effect of this new PR differential operation verified by using the simulation.展开更多
Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was util...Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography, (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.展开更多
A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the sla...A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the slant immersion has some interesting properties. The authors have great interest to consider slant immersions satisfying some additional conditions, such as unfull first normal bundles or Chen’s equality holding. They prove that there do not exist n-dimensional Kaehlerian slant immersions in CPn and CHn with unfull first normal bundles. Next, it is seen that every Kaehlerian slant submanifold satisfying an equality of Chen is minimal which is similar to that of Lagrangian immersions. But in contrast, it is shown that a large class of slant immersions do not exist thoroughly. Finally, they give an application of Chen’s inequality to general slant immersions in a complex projective space, which generalizes a result of Chen.展开更多
This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS netw...This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS network.The simulations are carried out by adding artificial noise to a real observation dataset.Instead of using the δ and σ parameters computed from slant wet delay,as in previous studies,we employ the Bias and RMS parameters,computed from the tomography results of total voxels,in order to obtain a more direct and comprehensive evaluation of the precision of the refractivity field determination.The results show that:(1) the precision of tropospheric wet refractivity estimated using BDS alone (only 9 satellites used) is basically comparable to that of GPS; (2) BDS+GPS (as of current operation) may not be able to significantly improve the data's spatial density for the application of refractivity tomography; and (3) any slight increase in the precision of refractivity tomography,particularly in the lower atmosphere,bears great significance for any applications dependent on the Chinese operational meteorological service.展开更多
The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not ...The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.展开更多
文摘Considering that at present the regular waves in common use have the profile symmetrized to a vertical axis, which are different from actual wind-driven sea waves, and based on deriving linear wave, solitary wave, fifth order Stokes wave and stream function wave by using Unified Variational Principle of Water Gravity Wave (UVPWGW), this paper derives wind-driven slanting profile wave by using UVPWGW. Its feature is that under the action of wind pressure, the wave profile is not symmetrized to a vertical axis, but that it is in the forward slanting form.
文摘The cutting force under a slanting cutter is discussed.It is not only related to the sheet to be cut and the slanting cutter height,but also to the shape of the cutter.It is from this point of view that the question of optimizing the cutter for slanting knife cutting operation is addressed.Then the general differential equations for the optimum cutter are obtained,and analytic solutions for the workpiece,the contour of which consists of straight lines and arcs,are obtained.A method for solving the general equations is also presented.The cutting force and breaking noise will be minimized for a given slanting cutter height and workpiece if the optimum cutter is employed.
基金supported by the National Natural Science Foundation of China(Youth Program No.52306058)Natural Science Foundation of Tianjin Municipal Science and Technology Commission(Youth Program No.22JCQNJC00050)+1 种基金the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology(No.SH2021111908)the Fundamental Research Funds for the Central Universities(No.3122024PT15)。
文摘A new passive control approach,utilizing bionic slanting riblets,is employed to mitigate the flow close to the blade endwall in a linear cascade,and its effectiveness and mechanism in controlling corner separation are investigated through numerical simulations.The slanting riblets are positioned at the endwall upstream of the cascade channel,and the influence of riblet height,yaw angle and relative position on the control of corner separation is investigated.The findings indicate that the application of slanting riblets can efficiently counteract corner separation across the stable operational range.Specifically,the introduction of riblets with a height of merely 0.1 times the boundary layer thickness results in a significant reduction in total pressure loss by up to 14.53%,while simultaneously enhancing the static pressure coefficient by 21.74%.Flow analysis reveals that minute vortices produced within the riblet channels tend to coalesce,forming a potent large-scale vortex near the boundary layer's base downstream.This phenomenon results in reduced additional losses compared to conventional vortex generators.Additionally,the induced vortex promotes enhanced mixing between the mainstream flow and boundary layer,inhibiting the lateral displacement of low-energy fluids within the endwall boundary layer.Consequently,this delays the onset of separation vortex formation and eliminates vortex rings in the corner region,ultimately enhancing the aerodynamic efficiency of the cascade.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(No.CEAIEF 20220201)the National Natural Science Foundation of China(Nos.42374113 and 42074101)the Central Publicinterest Scientific Institution Basal Research Fund(No.CEAIEF20230204).
文摘The structures of the mantle transition zone(MTZ)are of great significance for studying interactions of the subducted slab and deep mantle and related slab dynamics beneath subduction zones.Here by dense near-source SdP sampling from a large global dataset,we image topographies of transition zone discontinuities such as the 410-km and 660-km discontinuities(410 and 660)beneath the Kamchatka and conduct cross-section comparisons with the seismicity.Compared with the IASP91 model,the 410 exhibits apparent uplifts of 45-65 km with an average of 55 km in a horizontal width of~130 km,corresponding to lowtemperature anomalies of 750-1083 K with an average of 916 K.In contrast,the 660 shows depressions of 15-37 km with an average of 25 km together with downward deflections in a width of~260 km,implying low-temperature anomalies of 161-397 K with an average of 268 K.Thus,we confirm a thickened MTZ with a thickness of 325-345 km around the cold descending Pacific slab.We suggest that topographic patterns of transition zone discontinuities imply a Pacific slab that has been significantly heated in the MTZ with broadened thermal effects on the 660.When considered along with other studies,we infer that the slab is possibly heated by hot mantle flows around the torn slab window extended to at least the MTZ range,thus inducing variations in thermal and rheological properties of the slab.Our seismic results can provide more insight into slab dynamics in the northwestern Pacific.
基金financially supported by the national 863 program(2013AA064202)Marine subject interdisciplinary and guidance fund of Zhejiang University(188040+193414Y01)
文摘To obtain high-resolution of the subsurface structure, we modeled multidepth slanted airgun sources to attenuate the source ghost. By firing the guns in sequence according to their relative depths, such a source can build constructive primaries and destructive ghosts. To evaluate the attenuation of ghosts, the normalized squared error of the spectrum of the actual vs the expected signature is computed. We used a typical 680 cu.in airgun string and found via simulations that a depth interval of 1 or 1.5 m between airguns is optimum when considering deghosting performance and operational feasibility. When more subarrays are combined, preliminary simulations are necessary to determine the optimum depth combination. The frequency notches introduced by the excess use of subarrays may negatively affect the deghosting performance. Two or three slanted subarrays can be combined to remove the ghost effect. The sequence combination may partly affect deghosting but this can be eliminated by matched filtering. Directivity comparison shows that a multi-depth slanted source can significantly attenuate the notches and widen the energy transmission stability area.
文摘The pseudorange residual error of imperfect correction of the ionospheric time delay in pseudorange (PR) differential global positioning system (DGPS) is analyzed. The different vertical total electron content (TEC) and slant factors at the pierce points of satellite signals are the reasons of the residual error. An improved pseudorange differential approach is proposed and the effect of this new PR differential operation verified by using the simulation.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60375021)教育部留学回国人员科研启动基金(The Project-Sponsored by SRF for ROCS+5 种基金SEM)湖南省杰出青年基金(the Fund of Hunan Province for Distinguished Young Scholarunder Grant No.05JJ10011)湖南省自然基金重点基金(No.04JJ20010)湖南省教育厅重点项目(the Research Project of Department ofEducation of Hunan ProvinceChina under Grant No.04A056No.05C092)。
文摘Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System) satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented. A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography, (2) combining GPS observables with vertical constraints or a priori information, which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.
基金This project is supported by the NSFC(10271041)Tianyuan Youth Foundation of Mathematics.
文摘A submanifold in a complex space form is called slant if it has constant Wirtinger angles. B. Y. Chen and Y. Tazawa proved that there do not exist minimal proper slant surfaces in CP2 and CH2. So it seems that the slant immersion has some interesting properties. The authors have great interest to consider slant immersions satisfying some additional conditions, such as unfull first normal bundles or Chen’s equality holding. They prove that there do not exist n-dimensional Kaehlerian slant immersions in CPn and CHn with unfull first normal bundles. Next, it is seen that every Kaehlerian slant submanifold satisfying an equality of Chen is minimal which is similar to that of Lagrangian immersions. But in contrast, it is shown that a large class of slant immersions do not exist thoroughly. Finally, they give an application of Chen’s inequality to general slant immersions in a complex projective space, which generalizes a result of Chen.
基金supported by the National Basic ResearchDevelopment (973) Program of China (Grant No. 2012CB955903)+1 种基金the National Natural Science Foundation of China (Grant No. 20907047 and Grant No. 71373131)National Industry-specific Topics (Grant No.GYHY 201406078)
文摘This paper presents a novel approach for assessing the precision of the wet refractivity field using BDS (BeiDou navigation satellite system) simulations only,GPS,and BDS+GPS for the Shenzhen and Hongkong GNSS network.The simulations are carried out by adding artificial noise to a real observation dataset.Instead of using the δ and σ parameters computed from slant wet delay,as in previous studies,we employ the Bias and RMS parameters,computed from the tomography results of total voxels,in order to obtain a more direct and comprehensive evaluation of the precision of the refractivity field determination.The results show that:(1) the precision of tropospheric wet refractivity estimated using BDS alone (only 9 satellites used) is basically comparable to that of GPS; (2) BDS+GPS (as of current operation) may not be able to significantly improve the data's spatial density for the application of refractivity tomography; and (3) any slight increase in the precision of refractivity tomography,particularly in the lower atmosphere,bears great significance for any applications dependent on the Chinese operational meteorological service.
基金supported by National Natural Science Foundation of China(Grant Nos.51675258,51261024,51265039)State Key Laboratory of Mechani-cal System and Vibration(Grant No.MSV201914)Laboratory of Science and Technology on Integrated Logistics Support,National University of Defense Technology(Grant No.6142003190210).
文摘The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.